This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007068 M2360 #59 Jun 04 2025 16:24:08 %S A007068 1,3,4,10,14,34,48,116,164,396,560,1352,1912,4616,6528,15760,22288, %T A007068 53808,76096,183712,259808,627232,887040,2141504,3028544,7311552, %U A007068 10340096,24963200,35303296,85229696,120532992,290992384,411525376,993510144,1405035520,3392055808 %N A007068 a(n) = a(n-1) + (3+(-1)^n)*a(n-2)/2. %C A007068 First row of spectral array W(sqrt 2). %C A007068 Row sums of the square of the matrix with general term binomial(floor(n/2),n-k). - _Paul Barry_, Feb 14 2005 %D A007068 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007068 Reinhard Zumkeller, <a href="/A007068/b007068.txt">Table of n, a(n) for n = 1..1000</a> %H A007068 Aviezri S. Fraenkel and Clark Kimberling, <a href="https://doi.org/10.1016/0012-365X(94)90259-3">Generalized Wythoff arrays, shuffles and interspersions</a>, Discr. Math. 126 (1-3) (1994) 137-149. %H A007068 Sean A. Irvine, <a href="https://oeis.org/wiki/User:Sean_A._Irvine/Walks_on_Graphs#5_vertices">Walks on Graphs</a>. %H A007068 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-2). %F A007068 a(2n+1) = a(2n)+a(2n-1); a(2n) = a(2n-1)+2*a(2n-2); same recurrence (mod parity) as A001882. - _Len Smiley_, Feb 05 2001 %F A007068 a(n) = Sum_{k=0..n} Sum_{j=0..n} C(floor(n/2), n-j)*C(floor(j/2), j-k). - _Paul Barry_, Feb 14 2005 %F A007068 a(n) = 4*a(n-2)-2*a(n-4). G.f.: -x*(1+x)*(2*x^2-2*x-1)/(1-4*x^2+2*x^4). a(2n+1)=A007070(n). a(2n)=A007052(n). [_R. J. Mathar_, Aug 17 2009] %F A007068 a(n) = a(n-1) + a(n-2) * A000034(n-1). [_Reinhard Zumkeller_, Jan 21 2012] %t A007068 RecurrenceTable[{a[1]==1,a[2]==3,a[n]==a[n-1]+(3+(-1)^n) a[n-2]/2},a[n],{n,40}] (* _Harvey P. Dale_, Nov 12 2012 *) %o A007068 (Haskell) %o A007068 a007068 n = a007068_list !! (n-1) %o A007068 a007068_list = 1 : 3 : zipWith (+) %o A007068 (tail a007068_list) (zipWith (*) a000034_list a007068_list) %o A007068 -- _Reinhard Zumkeller_, Jan 21 2012 %Y A007068 Cf. A062112, A001882, A007070, A007052, A000034. %K A007068 nonn,easy,nice %O A007068 1,2 %A A007068 _N. J. A. Sloane_, _Mira Bernstein_ %E A007068 Better description and more terms from _Olivier Gérard_, Jun 05 2001