cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007088 The binary numbers (or binary words, or binary vectors, or binary expansion of n): numbers written in base 2.

This page as a plain text file.
%I A007088 M4679 #176 Mar 07 2025 07:50:11
%S A007088 0,1,10,11,100,101,110,111,1000,1001,1010,1011,1100,1101,1110,1111,
%T A007088 10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,
%U A007088 11011,11100,11101,11110,11111,100000,100001,100010,100011,100100,100101,100110,100111
%N A007088 The binary numbers (or binary words, or binary vectors, or binary expansion of n): numbers written in base 2.
%C A007088 List of binary numbers. (This comment is to assist people searching for that particular phrase. - _N. J. A. Sloane_, Apr 08 2016)
%C A007088 Or, numbers that are sums of distinct powers of 10.
%C A007088 Or, numbers having only digits 0 and 1 in their decimal representation.
%C A007088 Complement of A136399; A064770(a(n)) = a(n). - _Reinhard Zumkeller_, Dec 30 2007
%C A007088 From _Rick L. Shepherd_, Jun 25 2009: (Start)
%C A007088 Nonnegative integers with no decimal digit > 1.
%C A007088 Thus nonnegative integers n in base 10 such that kn can be calculated by normal addition (i.e., n + n + ... + n, with k n's (but not necessarily k + k + ... + k, with n k's)) or multiplication without requiring any carry operations for 0 <= k <= 9. (End)
%C A007088 For n > 1: A257773(a(n)) = 10, numbers that are Belgian-k for k=0..9. - _Reinhard Zumkeller_, May 08 2015
%C A007088 For any integer n>=0, find the binary representation and then interpret as decimal representation giving a(n). - _Michael Somos_, Nov 15 2015
%C A007088 N is in this sequence iff A007953(N) = A101337(N). A028897 is a left inverse. - _M. F. Hasler_, Nov 18 2019
%C A007088 For n > 0, numbers whose largest decimal digit is 1. - _Stefano Spezia_, Nov 15 2023
%D A007088 John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 21.
%D A007088 Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §2.8 Binary, Octal, Hexadecimal, p. 64.
%D A007088 Manfred R. Schroeder, "Fractals, Chaos, Power Laws", W. H. Freeman, 1991, p. 383.
%D A007088 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A007088 N. J. A. Sloane, <a href="/A007088/b007088.txt">Table of n, a(n) for n = 0..32768</a> (first 8192 terms from Franklin T. Adams-Watters)
%H A007088 Heinz Gumin, <a href="https://www.heenes.de/ro/material/leibniz/leibniz.pdf">Herrn von Leibniz' Rechnung mit Null und Eins</a>, Siemens AG, 3. Auflage 1979 -- contains facsimiles of Leibniz's papers from 1679 and 1703.
%H A007088 Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, <a href="https://arxiv.org/abs/2210.10968">Identities and periodic oscillations of divide-and-conquer recurrences splitting at half</a>, arXiv:2210.10968 [cs.DS], 2022, p. 45.
%H A007088 G. W. Leibniz, <a href="https://hal.archives-ouvertes.fr/ads-00104781">Explication de l'arithmétique binaire, qui se sert des seuls caractères 0 & 1; avec des remarques sur son utilité, et sur ce qu'elle donne le sens des anciennes figures chinoises de Fohy</a>, Mémoires de l'Académie Royale des Sciences, 1703, pp. 85-89; reprinted in Gumin (1979).
%H A007088 N. J. A. Sloane, <a href="/A007088/a007088.txt">Table of a(n) for n = 0..1048576</a> (A large file).
%H A007088 Robert G. Wilson v, <a href="/A007088/a007088.pdf">Letter to N. J. A. Sloane, Sep. 1992</a>.
%H A007088 <a href="/index/Mo#MWP">Index entries for sequences related to Most Wanted Primes video</a>.
%H A007088 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>.
%H A007088 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>.
%F A007088 a(n) = Sum_{i=0..m} d(i)*10^i, where Sum_{i=0..m} d(i)*2^i is the base 2 representation of n.
%F A007088 a(n) = (1/2)*Sum_{i>=0} (1-(-1)^floor(n/2^i))*10^i. - _Benoit Cloitre_, Nov 20 2001
%F A007088 a(n) = A097256(n)/9.
%F A007088 a(2n) = 10*a(n), a(2n+1) = a(2n)+1.
%F A007088 G.f.: 1/(1-x) * Sum_{k>=0} 10^k * x^(2^k)/(1+x^(2^k)) - for sequence as decimal integers. - _Franklin T. Adams-Watters_, Jun 16 2006
%F A007088 a(A000290(n)) = A001737(n). - _Reinhard Zumkeller_, Apr 25 2009
%F A007088 a(n) = Sum_{k>=0} A030308(n,k)*10^k. - _Philippe Deléham_, Oct 19 2011
%F A007088 For n > 0: A054055(a(n)) = 1. - _Reinhard Zumkeller_, Apr 25 2012
%F A007088 a(n) = Sum_{k=0..floor(log_2(n))} floor((Mod(n/2^k, 2)))*(10^k). - _José de Jesús Camacho Medina_, Jul 24 2014
%e A007088 a(6)=110 because (1/2)*((1-(-1)^6)*10^0 + (1-(-1)^3)*10^1 + (1-(-1)^1)*10^2) = 10 + 100.
%e A007088 G.f. = x + 10*x^2 + 11*x^3 + 100*x^4 + 101*x^5 + 110*x^6 + 111*x^7 + 1000*x^8 + ...
%e A007088 .
%e A007088   000    The numbers < 2^n can be regarded as vectors with
%e A007088   001    a fixed length n if padded with zeros on the left
%e A007088   010    side. This represents the n-fold Cartesian product
%e A007088   011    over the set {0, 1}. In the example on the left,
%e A007088   100    n = 3. (See also the second Python program.)
%e A007088   101    Binary vectors in this format can also be seen as a
%e A007088   110    representation of the subsets of a set with n elements.
%e A007088   111    - _Peter Luschny_, Jan 22 2024
%p A007088 A007088 := n-> convert(n, binary): seq(A007088(n), n=0..50); # _R. J. Mathar_, Aug 11 2009
%t A007088 Table[ FromDigits[ IntegerDigits[n, 2]], {n, 0, 39}]
%t A007088 Table[Sum[ (Floor[( Mod[f/2 ^n, 2])])*(10^n) , {n, 0, Floor[Log[2, f]]}], {f, 1, 100}] (* _José de Jesús Camacho Medina_, Jul 24 2014 *)
%t A007088 FromDigits/@Tuples[{1,0},6]//Sort (* _Harvey P. Dale_, Aug 10 2017 *)
%o A007088 (PARI) {a(n) = subst( Pol( binary(n)), x, 10)}; /* _Michael Somos_, Jun 07 2002 */
%o A007088 (PARI) {a(n) = if( n<=0, 0, n%2 + 10*a(n\2))}; /* _Michael Somos_, Jun 07 2002 */
%o A007088 (PARI) a(n)=fromdigits(binary(n),10) \\ _Charles R Greathouse IV_, Apr 08 2015
%o A007088 (Haskell)
%o A007088 a007088 0 = 0
%o A007088 a007088 n = 10 * a007088 n' + m where (n',m) = divMod n 2
%o A007088 -- _Reinhard Zumkeller_, Jan 10 2012
%o A007088 (Python)
%o A007088 def a(n): return int(bin(n)[2:])
%o A007088 print([a(n) for n in range(40)]) # _Michael S. Branicky_, Jan 10 2021
%o A007088 (Python)
%o A007088 from itertools import product
%o A007088 n = 4
%o A007088 for p in product([0, 1], repeat=n): print(''.join(str(x) for x in p))
%o A007088 # _Peter Luschny_, Jan 22 2024
%Y A007088 The basic sequences concerning the binary expansion of n are this one, A000120 (Hammingweight: sum of bits), A000788 (partial sums of A000120), A000069 (A000120 is odd), A001969 (A000120 is even), A023416 (number of bits 0), A059015 (partial sums). Bisections A099820 and A099821.
%Y A007088 Cf. A028897 (convert binary to decimal).
%Y A007088 Cf. A000042, A007089-A007095, A000695, A005836, A033042-A033052, A159918, A004290, A169965, A169966, A169967, A169964, A204093, A204094, A204095, A097256, A257773, A257770.
%Y A007088 Cf. A000290, A001737, A007953, A030308, A054055, A064770, A101337, A136399.
%K A007088 nonn,base,nice,easy
%O A007088 0,3
%A A007088 _N. J. A. Sloane_, _Robert G. Wilson v_