A175847 Number of cyclically 4-connected simple cubic graphs on 2n vertices.
1, 1, 2, 5, 18, 84, 607, 6100, 78824, 1195280, 20297600, 376940415, 7565248679
Offset: 2
Examples
On 4 vertices we have a(2)=1, the tetrahedron. On 6 vertices we count K_4 as a(3)=1, but not the utility graph.
References
- A. P. Yutsis, I. B. Levinson, V. V. Vanagas, A. Sen, Mathematical apparatus of the theory of angular momentum, (1962).
Links
- G. Brinkmann, Fast generation of cubic graphs, Journal of Graph Theory, 23(2):139-149, 1996.
- Gunnar Brinkmann, Jan Goedgebeur, Jonas Hagglund and Klas Markstrom, Generation and properties of snarks, arXiv:1206.6690 [math.CO], 2012-2013.
- B. Brinkmann, J. Goedgebeur and B. D. McKay, Generation of cubic graphs, Discr. Math. Theor. Comp. Sci. 13 (2) (2011) 69-80.
- Christian Brouder and Gunnar Brinkmann, Theo Thole and the graphical methods, J. Electr. Spectr. Relat. Phen. 86 (1-3) (1997) 127-132.
- H. P. Dürr and F. Wagner, Graphical methods for the execution of the gamma or sigma-algebra in spinor theories, Nuov. Cim. 53A (1) (1968) 255.
- J.-N. Massot, E. El-Baz and J. Lafoucrière, A general graphical method for angular momentum, Rev. Mod. Phys. 39 (2) (1967) 288-305.
- M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (2) (1999) 137-146.
- Wikipedia, Table of simple cubic graphs.
Crossrefs
The labeled graphs in this class are counted by A007101. - Brendan McKay, Sep 23 2010
Extensions
Extended by Nico Van Cleemput, Jan 26 2014
Comments