This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007126 M4126 #25 Jul 08 2025 17:00:22 %S A007126 1,0,1,1,6,18,111,839,11076,260327,11698115,1005829079,163985322983, %T A007126 50324128516939,29000032348355991,31395491269119883535, %U A007126 63967623226983806252862,245868096558697545918087280 %N A007126 Number of connected rooted strength 1 Eulerian graphs with n nodes. %C A007126 Comment from Valery Liskovets. Mar 13 2009: Here strength 1 means that the graph is a simple graph (i.e. without multiple edges and loops). Cf. the description of A002854 (number of Euler graphs); and the initial terms 1, 0, 1, 1, 6 can be easily verified. By the way, there is a simple bijective transformation of arbitrary n-graphs into rooted Eulerian (n+1)-graphs: add an external root-vertex and connect it to the odd-valent vertices. %D A007126 R. W. Robinson, personal communication. %D A007126 R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1979. %D A007126 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007126 Chai Wah Wu, <a href="/A007126/b007126.txt">Table of n, a(n) for n = 1..88</a> (terms 1..26 from R. W. Robinson) %F A007126 Comment from _Vladeta Jovovic_, Mar 15 2009: It is not difficult to prove that a(n) = A000088(n-1) - Sum_{k=1..n-1} a(k)*A002854(n-k), n>1, with a(1) =1, which is equivalent to the conjecture that the Euler transform of A158007(n) gives A007126(n+1) (see A158007). %F A007126 O.g.f.: x*G(x)/(1+H(x)), where G(x) = 1+x+2*x^2+4*x^3+11*x^4+34*x^5+... = o.g.f for A000088 and H(x) = x+x^2+2*x^3+3*x^4+7*x^5+16*x^6+... = o.g.f for A002854. [_Vladeta Jovovic_, Mar 14 2009] %t A007126 A000088 = Cases[Import["https://oeis.org/A000088/b000088.txt", "Table"], {_, _}][[All, 2]]; %t A007126 A002854 = Import["https://oeis.org/A002854/b002854.txt", "Table"][[All, 2]]; %t A007126 a[n_] := a[n] = A000088[[n]] - Sum[a[k] A002854[[n - k]], {k, 1, n - 1}]; %t A007126 Array[a, 18] (* _Jean-François Alcover_, Aug 29 2019, after _Vladeta Jovovic_ *) %Y A007126 Cf. A158007, A000088, A002854. %K A007126 nonn %O A007126 1,5 %A A007126 _N. J. A. Sloane_