This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007147 M0319 #72 Jun 30 2025 18:29:25 %S A007147 1,1,2,2,4,5,9,12,23,34,63,102,190,325,612,1088,2056,3771,7155,13364, %T A007147 25482,48175,92205,175792,337594,647326,1246863,2400842,4636390, %U A007147 8956060,17334801,33570816,65108062,126355336,245492244,477284182 %N A007147 Number of self-dual 2-colored necklaces with 2n beads. %C A007147 For n>=4 also number of Napier cycle types for dimension d=n-3. See Böhm link. - _Hugo Pfoertner_, Oct 01 2013 %C A007147 Also the number of combinatorial types of simplicial neighborly polytopes in dimension 2n - 3 with 2n vertices. This sequence was described before the enumeration of self-dual necklaces: see references. See links for a bijection between the two objects. - _Moritz Firsching_, Aug 13 2015 %D A007147 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A007147 Zhe Sun, T Suenaga, P Sarkar, S Sato, M Kotani, H Isobe, Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes, Proc. Nath. Acead. Sci. USA, vol. 113 no. 29, pp. 8109-8114, doi: 10.1073/pnas.1606530113 %H A007147 Vincenzo Librandi, <a href="/A007147/b007147.txt">Table of n, a(n) for n = 1..1000</a> %H A007147 Oswin Aichholzer and Anna Brötzner, <a href="https://doi.org/10.57717/cgt.v3i2.46">Bicolored Order Types</a>, Comp. Geom. Topology (2024) Vol. 3, No. 2, 3:1-3:17. %H A007147 Amos Altshuler and Peter McMullen, <a href="http://dx.doi.org/10.1112/S0025579300004873">The number of simplicial neighbourly d-polytopes with d + 3 vertices</a>, Mathematika, 20(02):263-266, 1973., Theorem 1, p. 263. %H A007147 Johannes Böhm, <a href="http://www.minet.uni-jena.de/Math-Net/reports/sources/2008/08-08report.pdf">Generalized hyperbolic Napier cycles and their hyperbolic kernels, Part III</a>, Jenaer Schriften zur Mathematik und Informatik, Math/inf/06/08, 2008. %H A007147 Moritz Firsching, <a href="http://arxiv.org/abs/1508.02531">Realizability and inscribability for some simplicial spheres and matroid polytopes</a>, , arXiv:1508.02531 [math.MG], 2015. See Appendix A1. %H A007147 Bernd Mulansky and Andreas Potschka, <a href="https://arxiv.org/abs/2404.01841">A zonogon approach for computing small polygons of maximum perimeter</a>, arXiv:2404.01841 [math.OC], 2024. See p. 9. See also <a href="https://doi.org/10.1007/s10107-025-02244-x">Math. Program.</a>, 2025. %H A007147 E. M. Palmer and R. W. Robinson, <a href="http://projecteuclid.org/euclid.pjm/1102711113">Enumeration of self-dual configurations</a>, Pacific J. Math., 110 (1984), 203-221. %H A007147 <a href="/index/Ne#necklaces">Index entries for sequences related to necklaces</a> %F A007147 a(n) = (1/2) * (A016116(n-1) + A000016(n)). %F A007147 a(n) = A263768(n) + 1. - _Bernd Mulansky_, Mar 08 2023 %t A007147 a[n_] := (1/2)*(2^Quotient[n-1, 2] + Total[(Mod[#, 2]*EulerPhi[#]*2^(n/#) & ) /@ Divisors[n]]/(2*n)); Table[a[n], {n, 1, 36}] (* _Jean-François Alcover_, Oct 24 2011, after Pari *) %o A007147 (PARI) a(n)= (1/2) *(2^((n-1)\2)+sumdiv(n,k,(k%2)*eulerphi(k)*2^(n/k))/(2*n)) %o A007147 (Sage) %o A007147 def a(n): %o A007147 return 2^floor((n-3)/2)+1/(4*(n))*sum([euler_phi(h)*2^((n)/h) for h in divisors(n) if is_odd(h)]) %o A007147 # _Moritz Firsching_, Aug 13 2015 %Y A007147 Cf. A000016, A016116, A263768. %K A007147 nonn,nice,easy %O A007147 1,3 %A A007147 _N. J. A. Sloane_ %E A007147 More terms from _Michael Somos_.