A007148 Number of self-complementary 2-colored bracelets (turnover necklaces) with 2n beads.
1, 2, 3, 6, 10, 20, 37, 74, 143, 284, 559, 1114, 2206, 4394, 8740, 17418, 34696, 69194, 137971, 275280, 549258, 1096286, 2188333, 4369162, 8724154, 17422652, 34797199, 69505908, 138845926, 277383872, 554189329, 1107297290, 2212558942
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- E. M. Palmer and R. W. Robinson, Enumeration of self-dual configurations Pacific J. Math., 110 (1984), 203-221.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Index entries for sequences related to bracelets
Crossrefs
Programs
-
Maple
# see A245558 L := proc(n,k) local a,j ; a := 0 ; for j in numtheory[divisors](igcd(n,k)) do a := a+numtheory[mobius](j)*binomial(n/j,k/j) ; end do: a/n ; end proc: A007148 := proc(n) local a,k,l; a := 0 ; for k from 1 to n do for l in numtheory[divisors](igcd(n,k)) do a := a+L(n/l,k/l)*ceil(k/2/l) ; end do: end do: a; end proc: seq(A007148(n),n=1..20) ; # R. J. Mathar, Jul 23 2017
-
Mathematica
a[n_] := (1/2)*(2^(n-1) + Total[ EulerPhi[2*#]*2^(n/#) & /@ Divisors[n]]/(2*n)); Table[ a[n], {n, 1, 33}] (* Jean-François Alcover, Oct 25 2011 *)
-
PARI
a(n)= (1/2) *(2^(n-1)+sumdiv(n,k,eulerphi(2*k)*2^(n/k))/(2*n))
-
Python
from sympy import divisors, totient def a(n): if n==1: return 1 return 2**(n - 2) + sum(totient(2*d)*2**(n//d) for d in divisors(n))//(4*n) print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Jul 24 2017
Formula
a(n) = 2^(n-2) + (1/(4n)) * Sum_{d|n} phi(2d)*2^(n/d). - N. J. A. Sloane, Sep 25 2012
Extensions
Description corrected by Christian G. Bower