cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007160 Number of diagonal dissections of a convex (n+6)-gon into n regions.

This page as a plain text file.
%I A007160 M5094 #43 Aug 14 2022 16:53:44
%S A007160 1,20,225,1925,14014,91728,556920,3197700,17587350,93486536,483367885,
%T A007160 2442687975,12109051500,59053512000,283963030560,1348824395160,
%U A007160 6338392712550,29503515951000,136173391604250
%N A007160 Number of diagonal dissections of a convex (n+6)-gon into n regions.
%C A007160 Number of standard tableaux of shape (n,n,1,1,1,1) (see Stanley reference). - _Emeric Deutsch_, May 20 2004
%C A007160 Number of increasing tableaux of shape (n+4,n+4) with largest entry 2n+4. An increasing tableau is a semistandard tableau with strictly increasing rows and columns, such that the set of entries forms an initial segment of the positive integers. - _Oliver Pechenik_, May 02 2014
%C A007160 a(n) = number of noncrossing partitions of 2n+4 into n blocks all of size at least 2.  - _Oliver Pechenik_, May 02 2014
%D A007160 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A007160 Vincenzo Librandi, <a href="/A007160/b007160.txt">Table of n, a(n) for n = 1..150</a>
%H A007160 D. Beckwith, <a href="http://www.jstor.org/stable/2589081">Legendre polynomials and polygon dissections?</a>, Amer. Math. Monthly, 105 (1998), 256-257.
%H A007160 P. Lisonek, <a href="http://dx.doi.org/10.1006/jsco.1995.1066">Closed forms for the number of polygon dissections</a>, Journal of Symbolic Computation 20 (1995), 595-601.
%H A007160 O. Pechenik, <a href="http://arxiv.org/abs/1209.1355">Cyclic sieving of increasing tableaux and small Schröder paths</a>, arXiv:1209.1355 [math.CO].
%H A007160 O. Pechenik, <a href="http://dx.doi.org/10.1016/j.jcta.2014.04.002">Cyclic sieving of increasing tableaux and small Schröder paths</a>, J. Combin. Theory A, 125 (2014), 357-378.
%H A007160 Ronald C. Read, <a href="http://dx.doi.org/10.1007/BF03031688">On general dissections of a polygon</a>, Aequat. math. 18 (1978) 370-388, Table 1.
%H A007160 R. P. Stanley, <a href="http://dx.doi.org/10.1006/jcta.1996.0099">Polygon dissections and standard Young tableaux</a>, J. Comb. Theory, Ser. A, 76, 175-177, 1996.
%F A007160 D-finite with recurrence (n+5)(n-1)*n*a(n) = 2(2n+3)(n+3)(n+2)a(n-1).
%F A007160 a(n) = binomial(n+3, 4)*binomial(2n+4, n-1)/n.
%t A007160 a[n_] := (n+1)(n+2)(n+3)*Binomial[2n+4, n-1]/24; Table[a[n], {n, 1, 19}](* _Jean-François Alcover_, Nov 16 2011 *)
%o A007160 (Magma) [Binomial(n+3, 4)*Binomial(2*n+4, n-1)/n  : n in [1..30]]; // _Vincenzo Librandi_, Nov 17 2011
%Y A007160 A diagonal of A033282.
%K A007160 easy,nonn,nice
%O A007160 1,2
%A A007160 _N. J. A. Sloane_
%E A007160 Offset is correct!