This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007175 M2762 #21 Jan 11 2020 18:33:58 %S A007175 1,1,1,3,8,40,211,1406,9754,71591,537699,4131943,32271490,255690412, %T A007175 2050376883,16616721067,135920429975,1120999363012,9313779465810, %U A007175 77897862860818,655433405297407,5544948758579214,47143948331898873,402655164736641843,3453509765971944236,29734988097830504532 %N A007175 Number of simplicial 4-clusters with n cells. %C A007175 Hering article has error in the 20th term. - _Robert A. Russell_, Apr 20 2012 %D A007175 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007175 F. Hering et al., <a href="http://dx.doi.org/10.1016/0012-365X(82)90121-2">The enumeration of stack polytopes and simplicial clusters</a>, Discrete Math., 40 (1982), 203-217. %t A007175 Table[Binomial[4 n, n]/(12 (3 n + 1) (3 n + 2)) + %t A007175 If[EvenQ[n], %t A007175 Binomial[2 n, n/2]/(8 (3 n/2 + 1)) + %t A007175 Binomial[2 n - 1, n/2 - 1]/((3 n/2 + 1)), %t A007175 Binomial[2 n - 1, n/2 - 1/2]/(2 (3 n/2 + 1/2))] + %t A007175 Switch[Mod[n, 3], 0, Binomial[4 n/3, n/3]/(3 (n + 1)), 1, %t A007175 2 Binomial[4 n/3 - 1/3, n/3 - 1/3]/(3 (n + 1)), 2, %t A007175 Binomial[4 n/3 - 2/3, n/3 - 2/3]/(n + 1)] + %t A007175 If[2 == Mod[n, 4], Binomial[n - 1, n/4 - 1/2]/(2 (3 n/4 + 1/2)), 0] + %t A007175 If[1 == Mod[n, 5], 2 Binomial[4 n/5 - 4/5, n/5 - 1/5]/(5 (3 n/5 + 2/5)), %t A007175 0], {n, 1, 30}] (* _Robert A. Russell_, Apr 20 2012 *) %K A007175 nonn,easy %O A007175 1,4 %A A007175 _N. J. A. Sloane_ %E A007175 More terms from _Robert A. Russell_, Apr 20 2012