This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007185 M3940 #75 Feb 16 2025 08:32:31 %S A007185 5,25,625,625,90625,890625,2890625,12890625,212890625,8212890625, %T A007185 18212890625,918212890625,9918212890625,59918212890625, %U A007185 259918212890625,6259918212890625,56259918212890625,256259918212890625,2256259918212890625,92256259918212890625 %N A007185 Automorphic numbers ending in digit 5: a(n) = 5^(2^n) mod 10^n. %C A007185 Conjecture: For any m coprime to 10 and for any k, the density of n such that a(n) == k (mod m) is 1/m. - _Eric M. Schmidt_, Aug 01 2012 %C A007185 a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 5^n and a(n) - 1 is divisible by 2^n. - _Eric M. Schmidt_, Aug 18 2012 %D A007185 V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179. %D A007185 R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2 (No. 3, 1969), 170-174. %D A007185 Jan Gullberg, Mathematics, From the Birth of Numbers, W. W. Norton & Co., NY, page 253-4. %D A007185 Ya. I. Perelman, Algebra can be fun, pp. 97-98. %D A007185 C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991. %D A007185 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007185 Eric M. Schmidt, <a href="/A007185/b007185.txt">Table of n, a(n) for n = 1..1000</a> %H A007185 Robert Dawson, <a href="https://www.emis.de/journals/JIS/VOL21/Dawson/dawson6.html">On Some Sequences Related to Sums of Powers</a>, J. Int. Seq., Vol. 21 (2018), Article 18.7.6. %H A007185 C. P. Schut, <a href="/A007185/a007185.pdf">Idempotents</a>, Report AM-R9101, Centre for Mathematics and Computer Science, Amsterdam, 1991. (Annotated scanned copy) %H A007185 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AutomorphicNumber.html">Automorphic Number</a> %H A007185 Xiaolong Ron Yu, <a href="http://www.pme-math.org/journal/issues/PMEJ.Vol.10.No.10.pdf">Curious Numbers</a>, Pi Mu Epsilon Journal, Spring 1999, pp. 819-823. %H A007185 <a href="/index/Ar#automorphic">Index entries for sequences related to automorphic numbers</a> %F A007185 a(n) = 5^(2^n) mod 10^n. %F A007185 a(n)^2 == a(n) (mod 10^n), that is, a(n) is an idempotent in Z[10^n]. %F A007185 a(n+1) = a(n)^2 mod 10^(n+1). - _Eric M. Schmidt_, Jul 28 2012 %F A007185 a(2n) = (3*a(n)^2 - 2*a(n)^3) mod 10^(2n). - _Sylvie Gaudel_, Mar 10 2018 %e A007185 625 is in the sequence because 625^2 = 390625, which ends in 625. %e A007185 90625 is in the sequence because 90625^2 = 8212890625, which ends in 90625. %e A007185 90635 is not in the sequence because 90635^2 = 8214703225, which does not end in 90635. %p A007185 a:= n-> 5&^(2^n) mod 10^n: seq(a(n), n=1..25); # _Alois P. Heinz_, Mar 11 2018 %t A007185 Table[PowerMod[5, 2^n, 10^n], {n, 25}] (* _Vincenzo Librandi_, Jun 11 2016 *) %o A007185 (Sage) [crt(1, 0, 2^n, 5^n) for n in range(1, 1001)] # _Eric M. Schmidt_, Aug 18 2012 %o A007185 (PARI) A007185(n)=lift(Mod(5,10^n)^2^n) \\ _M. F. Hasler_, Dec 05 2012 %o A007185 (Magma) [Modexp(5, 2^n, 10^n): n in [1..30]]; // _Vincenzo Librandi_, Jun 11 2016 %Y A007185 A018247 gives the associated 10-adic number. %Y A007185 A003226 = {0, 1} union (this sequence) union A016090. %K A007185 nonn,base %O A007185 1,1 %A A007185 _N. J. A. Sloane_ %E A007185 More terms from _David W. Wilson_ %E A007185 Edited by _David W. Wilson_, Sep 26 2002 %E A007185 Further edited by _N. J. A. Sloane_, Jul 21 2010 %E A007185 Comment moved to name by _Alonso del Arte_, Mar 10 2018