cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007219 Number of golygons of order 8n (or serial isogons of order 8n).

This page as a plain text file.
%I A007219 M5204 #60 Feb 16 2025 08:32:31
%S A007219 1,28,2108,227322,30276740,4541771016,739092675672,127674038970623,
%T A007219 23085759901610016,4327973308197103600,835531767841066680300,
%U A007219 165266721954751746697155,33364181616540879268092840
%N A007219 Number of golygons of order 8n (or serial isogons of order 8n).
%C A007219 A golygon of order N is a closed path along the streets of the Manhattan grid with successive edge lengths of 1,2,3,...,N (returning to the starting point after the edge of length N), and which makes a 90-degree turn (left or right) after each edge.
%C A007219 It is known that the order N must be a multiple of 8.
%D A007219 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A007219 I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 92.
%H A007219 Vaclav Kotesovec, <a href="/A007219/b007219.txt">Table of n, a(n) for n = 1..100</a>
%H A007219 A. K. Dewdney, <a href="https://www.jstor.org/stable/24996874">An odd journey along even roads leads to home in Golygon City</a>, Mathematical Recreations Column, Scientific American, July 1990, pp. 118-121.
%H A007219 A. K. Dewdney, <a href="/A007219/a007219.png">Illustration of the unique golygon of order 8</a>, from the article "An odd journey along even roads leads to home in Golygon City", Mathematical Recreations Column, Scientific American, July 1990, pp. 118-121.
%H A007219 A. K. Dewdney, <a href="/A007219/a007219_1.png">Illustration of the 28 golygons of order 16</a>, from the article "An odd journey along even roads leads to home in Golygon City", Mathematical Recreations Column, Scientific American, July 1990, pp. 118-121.
%H A007219 Adam P. Goucher, <a href="http://cp4space.wordpress.com/2014/04/30/golygons-and-golyhedra/">Golygons and golyhedra</a>
%H A007219 L. Sallows, M. Gardner, R. K. Guy and D. E. Knuth, <a href="http://www.jstor.org/stable/2690648">Serial isogons of 90 degrees</a>, Math. Mag. 64 (1991), 315-324.
%H A007219 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Golygon.html">Golygon</a>
%F A007219 a(n) = A006718(n)/4. - _Charles R Greathouse IV_, Apr 29 2012
%F A007219 a(n) ~ 3*2^(8*n-6)/(Pi*n^2*(4*n+1)). - _Vaclav Kotesovec_, Dec 09 2013
%t A007219 p1[n_] := Product[x^k + 1, {k, 1, n - 1, 2}] // Expand; p2[n_] := Product[x^k + 1, {k, 1, n/2}] // Expand; c[n_] := Coefficient[p1[n], x, n^2/8] * Coefficient[p2[n], x, n (n/2 + 1)/8]; a[n_] := c[8*n]/4; Table[a[n], {n, 1, 13}] (* _Jean-François Alcover_, Jul 24 2013, after _Eric W. Weisstein_ *)
%Y A007219 Cf. A060005, A107350.
%Y A007219 See also A006718.
%K A007219 nonn,easy,nice
%O A007219 1,2
%A A007219 _Simon Plouffe_
%E A007219 Two more terms from _N. J. A. Sloane_ (from the reference), May 23 2005