A007293 Dimension of space of weight systems of chord diagrams.
1, 0, 1, 1, 3, 4, 9, 14, 27, 44, 80, 132, 232
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- D. Bar-Natan, On the Vassiliev Knot Invariants, Topology 34 (1995) 423-472.
- D. Bar-Natan, Bibliography of Vassiliev Invariants.
- J. S. Birman, Letter to N. J. A. Sloane, Apr 09 1994
- J. S. Birman, New points of view in knot theory.. Bulletin of the American Mathematical Society 28.2 (1993): 253-287.
- D. J. Broadhurst, Conjectured enumeration of Vassiliev invariants.
- Jan Kneissler, The number of primitive Vassiliev invariants of degree up to 12
- T. Ohtsuki (ed.), Problems on invariants of knots and 3-manifolds, arXiv:math/0406190 [math.GT], (2004); see Table 3 on p.408.
- Evert Stenlund, On the Vassiliev Invariants, June 2017.
- S. D. Tyurina, Diagram invariants of knots and the Kontsevich integral, J. Math. Sci. 134 (2) (2006) 2017-2017, Table 1.
- Index entries for sequences related to knots
Formula
Broadhurst gives a conjectured g.f.
Extensions
Description corrected by Sergei Duzhin, Aug 29 2000