This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007296 M1483 #26 Oct 05 2022 04:58:23 %S A007296 1,-2,5,-15,52,-200,827,-3596,16191,-74702,350794,-1669439,8029728, %T A007296 -38963552,190499461,-937550897,4641253152,-23096403422,115475977145, %U A007296 -579799302750,2922325238788,-14780595276064,74995317703482,-381625745964018,1947147485751919 %N A007296 Reversion of (1 + g.f. for primes). %D A007296 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007296 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A007296 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A007296 a(n) ~ -(-1)^n / (sqrt(2*Pi*t) * n^(3/2) * r^(n - 1/2)), where t = Sum_{k>=0} (k+1)*(k+2)*prime(k+1) * s^k = 2.76855665284448835155556293964568965050630014..., s = -0.4018472849329562729164121279063799981049446018535... is the root of the equation Sum_{k>=1} (k+1)*prime(k) * s^k = -1 and r = -s - Sum_{k>=2} prime(k-1) * s^k = 0.18422249999982341975449666640383532448650252568... - _Vaclav Kotesovec_, Apr 21 2020 %p A007296 read transforms; s1 := [seq(ithprime(i),i=1..40)]; s2 := [1,op(%)]; REVERT(%); %p A007296 # Alternative, using function CompInv from A357588. %p A007296 CompInv(25, n -> if n = 1 then 1 else ithprime(n-1) fi); # _Peter Luschny_, Oct 05 2022 %t A007296 nmax = 25; Rest[CoefficientList[InverseSeries[Series[x + Sum[Prime[k-1]*x^k, {k, 2, nmax}], {x, 0, nmax}], x], x]] (* _Vaclav Kotesovec_, Apr 21 2020 *) %Y A007296 Cf. A334263. %K A007296 sign,easy %O A007296 1,2 %A A007296 _N. J. A. Sloane_, _Mira Bernstein_ %E A007296 Signs corrected Dec 24 2001