cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007312 Reversion of g.f. (with constant term omitted) for partition numbers.

This page as a plain text file.
%I A007312 M1482 #34 Jan 18 2024 06:23:18
%S A007312 1,-2,5,-15,52,-200,825,-3565,15900,-72532,336539,-1582593,7524705,
%T A007312 -36111810,174695712,-851020367,4171156249,-20555470155,101787990805,
%U A007312 -506227992092,2527493643612,-12663916942984,63656297034920,-320914409885850,1622205233276889
%N A007312 Reversion of g.f. (with constant term omitted) for partition numbers.
%D A007312 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A007312 Vaclav Kotesovec, <a href="/A007312/b007312.txt">Table of n, a(n) for n = 1..1000</a>
%H A007312 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A007312 From _Vaclav Kotesovec_, Nov 11 2017: (Start)
%F A007312 a(n) ~ -(-1)^n * c * d^n / n^(3/2), where
%F A007312 d = 5.379264118840884783404842050140885100801253519243086... and
%F A007312 c = 0.10697042824132534557642152089737206588353695053... (End)
%F A007312 G.f. A(x) satisfies: A(x) = 1 - (1/(1 + x)) * Product_{k>=2} 1/(1 - A(x)^k). - _Ilya Gutkovskiy_, Apr 23 2020
%p A007312 # Using function CompInv from A357588.
%p A007312 CompInv(25, n -> combinat:-numbpart(n)); # _Peter Luschny_, Oct 05 2022
%t A007312 nmax = 30; Rest[CoefficientList[InverseSeries[Series[Sum[PartitionsP[n]*x^n, {n, 1, nmax}], {x, 0, nmax}]], x]] (* _Vaclav Kotesovec_, Nov 11 2017 *)
%t A007312 Rest[CoefficientList[InverseSeries[Series[-1 + 1/QPochhammer[x],{x,0,30}],x],x]] (* _Vaclav Kotesovec_, Jan 18 2024 *)
%t A007312 (* Calculation of constant d: *) Chop[1/r /. FindRoot[{(1 + r)*QPochhammer[s, s] == 1, Log[1 - s] + QPolyGamma[0, 1, s] - (1 + r)*s*Log[s] * Derivative[0, 1][QPochhammer][s, s] == 0}, {r, -1/5}, {s, -1/2}, WorkingPrecision -> 70]] (* _Vaclav Kotesovec_, Jan 18 2024 *)
%Y A007312 Cf. A000041, A050393, A066398, A334315.
%K A007312 sign,easy
%O A007312 1,2
%A A007312 _N. J. A. Sloane_, _Mira Bernstein_
%E A007312 Signs corrected Dec 24 2001