This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007326 M2734 #30 Aug 09 2019 12:17:51 %S A007326 0,0,0,0,0,0,1,3,8,19,40,83,176,365,775,1643,3483,7299,15170,31010, %T A007326 62563,124221,243296,469856,896491,1690475,3155551,5834871,10701036, %U A007326 19479021,35227889,63335778,113286272,201687929,357585904,631574315,1111614614,1950096758,3410420973,5946337698,10337420278,17918573379,30968896662,53366449357,91689380979,157058043025,268210414468,456613323892 %N A007326 Difference between A000294 and the number of solid partitions of n (A000293). %C A007326 Understanding this sequence is a famous unsolved problem in the theory of partitions. %D A007326 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190. %D A007326 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007326 Vaclav Kotesovec, <a href="/A007326/b007326.txt">Table of n, a(n) for n = 0..72</a> %H A007326 A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, <a href="http://dx.doi.org/10.1017/S0305004100042171">Some computations for m-dimensional partitions</a>, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. %H A007326 A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, <a href="/A000219/a000219.pdf">Some computations for m-dimensional partitions</a>, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy] %Y A007326 a(n) = A000294(n) - A000293(n). %Y A007326 Cf. A007327, A007328, A007329, A007330, A008780, A042984. %K A007326 nonn %O A007326 0,8 %A A007326 _N. J. A. Sloane_, _Mira Bernstein_ %E A007326 Entry revised by _Sean A. Irvine_ and _N. J. A. Sloane_, Dec 18 2017