cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007326 Difference between A000294 and the number of solid partitions of n (A000293).

This page as a plain text file.
%I A007326 M2734 #30 Aug 09 2019 12:17:51
%S A007326 0,0,0,0,0,0,1,3,8,19,40,83,176,365,775,1643,3483,7299,15170,31010,
%T A007326 62563,124221,243296,469856,896491,1690475,3155551,5834871,10701036,
%U A007326 19479021,35227889,63335778,113286272,201687929,357585904,631574315,1111614614,1950096758,3410420973,5946337698,10337420278,17918573379,30968896662,53366449357,91689380979,157058043025,268210414468,456613323892
%N A007326 Difference between A000294 and the number of solid partitions of n (A000293).
%C A007326 Understanding this sequence is a famous unsolved problem in the theory of partitions.
%D A007326 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.
%D A007326 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A007326 Vaclav Kotesovec, <a href="/A007326/b007326.txt">Table of n, a(n) for n = 0..72</a>
%H A007326 A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, <a href="http://dx.doi.org/10.1017/S0305004100042171">Some computations for m-dimensional partitions</a>, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.
%H A007326 A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, <a href="/A000219/a000219.pdf">Some computations for m-dimensional partitions</a>, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
%Y A007326 a(n) = A000294(n) - A000293(n).
%Y A007326 Cf. A007327, A007328, A007329, A007330, A008780, A042984.
%K A007326 nonn
%O A007326 0,8
%A A007326 _N. J. A. Sloane_, _Mira Bernstein_
%E A007326 Entry revised by _Sean A. Irvine_ and _N. J. A. Sloane_, Dec 18 2017