cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007328 Difference between the number of 5-dimensional partitions of n and an approximation derived from binomial(n,4).

This page as a plain text file.
%I A007328 M4972 #39 Jan 13 2025 07:48:31
%S A007328 0,0,0,0,0,15,75,310,1060,3281,9564,26719,72239,191569,500797,1299925,
%T A007328 3362473,8697198,22513878,58352126,151267141,391728632,1011734975,
%U A007328 2602330120,6657204192,16920629023,42697311397,106912113623,265560809521,654270114555
%N A007328 Difference between the number of 5-dimensional partitions of n and an approximation derived from binomial(n,4).
%D A007328 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A007328 A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, <a href="https://doi.org/10.1017/S0305004100042171">Some computations for m-dimensional partitions</a>, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100; <a href="http://boltzmann.wdfiles.com/local--files/refined-counting/ABMM.pdf">alternative link</a>.
%H A007328 A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, <a href="/A000219/a000219.pdf">Some computations for m-dimensional partitions</a>, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
%F A007328 a(n) = A000391(n) - A000390(n). - _Sean A. Irvine_, Dec 18 2017
%Y A007328 Cf. A000390, A000391.
%Y A007328 Cf. A007326, A007327, A007329, A007330.
%K A007328 nonn,more
%O A007328 1,6
%A A007328 _N. J. A. Sloane_, _Mira Bernstein_
%E A007328 a(11)-a(21) from _Sean A. Irvine_, Dec 18 2017
%E A007328 More terms from _Amiram Eldar_, May 11 2024