cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007336 Signature sequence of sqrt 2 (arrange the numbers i+j*x (i,j >= 1) in increasing order; the sequence of i's is the signature of x).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 8, 1, 4, 7, 3, 6, 9, 2, 5, 8, 1, 4, 7, 10, 3, 6, 9, 2, 5, 8, 1, 11, 4, 7, 10, 3, 6, 9, 2, 12, 5, 8, 1, 11, 4, 7, 10, 3, 13, 6, 9, 2, 12, 5, 8, 1, 11, 4, 14, 7, 10, 3, 13, 6, 9, 2, 12, 5, 15, 8, 1, 11, 4, 14, 7, 10, 3, 13, 6, 16, 9, 2
Offset: 1

Views

Author

Keywords

References

  • Clark Kimberling, "Fractal Sequences and Interspersions", Ars Combinatoria, vol. 45 p 157 1997.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Take[ Transpose[ Sort[ Flatten[ Table[{i + j*Sqrt[2], i}, {i, 17}, {j, 15}], 1], #1[[1]] < #2[[1]] &]][[2]], 96] (* Robert G. Wilson v, Jul 24 2004 *)
    Quiet[Block[{$ContextPath}, Needs["Combinatorica`"]], {General::compat}]
    memos = <||>;
    zeroBasedC[theta_, i_] := zeroBasedC[theta, i] = Module[{memo, depth},
      memo = Lookup[memos, theta, {-1, 0}];
      While[memo[[-1]] <= i, AppendTo[memo, memo[[-1]] + Ceiling[theta * (Length[memo] - 1)]]];
      memos[i] = memo;
      depth = Combinatorica`BinarySearch[memo, i] - 3/2;
      If[IntegerQ[depth] && depth <= i, 1 + zeroBasedC[theta, i - depth], 0]
    ];
    A007336[i_] := zeroBasedC[2^(1/2), i - 1] + 1;
    Table[A007336[i], {i, 1, 100}] (* Brady J. Garvin, Aug 19 2024 *)
  • Python
    from bisect import bisect
    from collections import defaultdict
    from functools import cache
    from math import ceil
    memos = defaultdict(lambda: [-1, 0])
    @cache
    def zero_based_c(theta, i):
        memo = memos[theta]
        while memo[-1] <= i:
            memo.append(memo[-1] + ceil(theta * (len(memo) - 1)))
        depth = bisect(memo, i) - 1
        return 0 if depth > i or memo[depth] == i else 1 + zero_based_c(theta, i - depth)
    def A007336(i):
        return zero_based_c(2 ** 0.5, i - 1) + 1
    print([A007336(i) for i in range(1, 1001)])  # Brady J. Garvin, Aug 18 2024

Formula

If delete first occurrence of 1, 2, 3, ... the sequence is unchanged.

Extensions

More terms from Robert G. Wilson v, Jul 24 2004