cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007340 Numbers whose divisors' harmonic and arithmetic means are both integers.

This page as a plain text file.
%I A007340 M4299 #69 Apr 19 2022 07:26:50
%S A007340 1,6,140,270,672,1638,2970,6200,8190,18600,18620,27846,30240,32760,
%T A007340 55860,105664,117800,167400,173600,237510,242060,332640,360360,539400,
%U A007340 695520,726180,753480,1089270,1421280,1539720,2229500,2290260,2457000
%N A007340 Numbers whose divisors' harmonic and arithmetic means are both integers.
%C A007340 Intersection of A001599 and A003601.
%C A007340 The following are also in A046985: 1, 6, 672, 30240, 32760. Also contains multiply perfect (A007691) numbers. - _Labos Elemer_
%C A007340 The numbers whose average divisor is also a divisor. Ore's harmonic numbers A001599 without the numbers A046999. - _Thomas Ordowski_, Oct 26 2014, Apr 17 2022
%C A007340 Harmonic numbers k whose harmonic mean of divisors (A001600) is also a divisor of k. - _Amiram Eldar_, Apr 19 2022
%D A007340 G. L. Cohen, personal communication.
%D A007340 Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
%D A007340 N. J. A. Sloane, Illustration for sequence M4299 (=A007340) in The Encyclopedia of Integer Sequences (with Simon Plouffe), Academic Press, 1995.
%D A007340 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A007340 D. Wells, Curious and interesting numbers, Penguin Books, p. 124.
%H A007340 Donovan Johnson, <a href="/A007340/b007340.txt">Table of n, a(n) for n = 1..847</a>
%H A007340 G. L. Cohen, <a href="/A007340/a007340.pdf">Email to N. J. A. Sloane, Apr. 1994</a>
%H A007340 T. Goto and S. Shibata, <a href="http://dx.doi.org/10.1090/S0025-5718-03-01554-0">All numbers whose positive divisors have integral harmonic mean up to 300</a>, Math. Comput. 73 (2004), 475-491.
%H A007340 Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha138.htm">Factorizations of many number sequences</a>
%H A007340 Oystein Ore, <a href="http://www.jstor.org/stable/2305616">On the averages of the divisors of a number</a>, Amer. Math. Monthly, 55 (1948), 615-619.
%F A007340 a = Sigma(1, x)/Sigma(0, x) integer and b = x/a also.
%e A007340 x = 270: Sigma(0, 270) = 16, Sigma(1, 270) = 720; average divisor a = 720/16 = 45 and integer 45 divides x, x/a = 270/45 = 6, but 270 is not in A007691.
%p A007340 filter:= proc(n)
%p A007340 uses numtheory;
%p A007340 local a;
%p A007340 a:= sigma(n)/sigma[0](n);
%p A007340 type(a,integer) and type(n/a,integer);
%p A007340 end proc:
%p A007340 select(filter, [$1..2500000]); # _Robert Israel_, Oct 26 2014
%t A007340 Do[ a = DivisorSigma[0, n]/ DivisorSigma[1, n]; If[IntegerQ[n*a] && IntegerQ[1/a], Print[n]], {n, 1, 2500000}] (* _Labos Elemer_ *)
%t A007340 ahmQ[n_] := Module[{dn = Divisors[n]}, IntegerQ[Mean[dn]] && IntegerQ[HarmonicMean[dn]]]; Select[Range[2500000], ahmQ] (* _Harvey P. Dale_, Nov 16 2011 *)
%o A007340 (Haskell)
%o A007340 a007340 n = a007340_list !! (n-1)
%o A007340 a007340_list = filter ((== 0) . a054025) a001599_list
%o A007340 -- _Reinhard Zumkeller_, Dec 31 2013
%o A007340 (PARI) is(n)=my(d=divisors(n),s=vecsum(d)); s%#d==0 && #d*n%s==0 \\ _Charles R Greathouse IV_, Feb 07 2017
%Y A007340 Intersection of A003601 and A001599.
%Y A007340 Different from A090945.
%Y A007340 Cf. A001600, A007691, A046985-A046987, A046999, A054025.
%K A007340 nonn,nice
%O A007340 1,2
%A A007340 _N. J. A. Sloane_
%E A007340 More terms from _Robert G. Wilson v_, Oct 03 2002
%E A007340 Edited by _N. J. A. Sloane_, Oct 05 2008 at the suggestion of _R. J. Mathar_