cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007346 Order of group generated by perfect shuffles of 2n cards.

This page as a plain text file.
%I A007346 M1909 #43 Jul 10 2021 06:58:20
%S A007346 2,8,24,24,1920,7680,322560,64,92897280,3715891200,40874803200,
%T A007346 194641920,25505877196800,1428329123020800,21424936845312000,160,
%U A007346 23310331287699456000,1678343852714360832000,31888533201572855808000
%N A007346 Order of group generated by perfect shuffles of 2n cards.
%D A007346 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A007346 Vincenzo Librandi, <a href="/A007346/b007346.txt">Table of n, a(n) for n = 1..200</a>
%H A007346 Steve Butler, Persi Diaconis and R. L. Graham, <a href="https://arxiv.org/abs/1412.8533">The mathematics of the flip and horseshoe shuffles</a>, arXiv:1412.8533 [math.CO], 2014.
%H A007346 Steve Butler, Persi Diaconis and R. L. Graham, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.123.6.542">The mathematics of the flip and horseshoe shuffles</a>, The American Mathematical Monthly 123.6 (2016): 542-556.
%H A007346 P. Diaconis, R. L. Graham and W. M. Kantor, <a href="http://dx.doi.org/10.1016/0196-8858(83)90009-X">The mathematics of perfect shuffles</a>, Adv. Appl. Math. 4 (2) (1983) 175-196.
%H A007346 <a href="/index/Gre#groups">Index entries for sequences related to groups</a>
%F A007346 See Maple program. - _N. J. A. Sloane_, Jun 20 2016
%p A007346 f:=proc(n) local k,i,np;
%p A007346 if n=1 then 2
%p A007346 elif (n mod 2) = 1 then n!*2^(n-1)
%p A007346 elif n=6 then 2^9*3*5
%p A007346 elif n=12 then 2^17*3^3*5*11
%p A007346 elif n=2 then 8
%p A007346 elif (n mod 4)=2 then n!*2^n
%p A007346 else
%p A007346 np:=n; k:=1;
%p A007346 for i while (np mod 2) = 0 do
%p A007346    np:=np/2; k:=k+1; od;
%p A007346    if (n=2^(k-1)) then k*2^k else n!*2^(n-2); fi;
%p A007346 fi;
%p A007346 end;
%p A007346 [seq(f(n),n=1..64)]; # _N. J. A. Sloane_, Jun 20 2016
%t A007346 a[1] = 2; a[2] = 8; a[n_] := With[{m = 2^n*n!}, Which[Mod[n, 4] == 2, If[n == 6, m/6, m], Mod[n, 4] == 1, m/2, Mod[n, 4] == 3, m/2, True, If[n == 2^IntegerExponent[n, 2], 2*n*(IntegerExponent[n, 2] + 1), If[n == 12, m/(2*7!), m/4]]]]; Table[a[n], {n, 1, 19}](* _Jean-François Alcover_, Feb 17 2012, after _Franklin T. Adams-Watters_ *)
%o A007346 (PARI) A007346(n) = local(M); M=2^n*n!; if(n%4==2, if(n==2, 8, if(n==6, M/6, M)), if(n%4==1, if(n==1, 2, M/2), if(n%4==3, M/2, if(n==2^valuation(n, 2), 2*n*(valuation(n, 2)+1), if(n==12, M/(7!*2), M/4))))) \\ _Franklin T. Adams-Watters_, Nov 30 2006
%Y A007346 Cf. A002326, A024222, A274299.
%Y A007346 Bisections give A002671, A274303.
%K A007346 nonn,nice,easy
%O A007346 1,1
%A A007346 _N. J. A. Sloane_, _Mira Bernstein_
%E A007346 Corrected and extended by _Franklin T. Adams-Watters_, Nov 30 2006