This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007348 M3035 #31 Sep 25 2021 16:17:05 %S A007348 3,17,29,31,43,61,67,71,83,97,107,109,113,149,151,163,181,191,193,199, %T A007348 227,229,233,257,269,283,307,311,313,337,347,359,389,431,433,439,443, %U A007348 461,467,479,509,523,541,563,577,587,593,599,631,683,701,709,719,787,821,827,839 %N A007348 Primes for which -10 is a primitive root. %C A007348 Union of long period primes (A006883) of the form 4k+1 and half period primes (A097443) of the form 4k+3. - _Davide Rotondo_, Aug 25 2021 %D A007348 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 24.8, p. 864. %D A007348 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007348 R. J. Mathar, <a href="/A007348/b007348.txt">Table of n, a(n) for n = 1..10000</a> %H A007348 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A007348 Robert G. Wilson v, <a href="/A005596/a005596.pdf">Letter to N. J. A. Sloane, Aug. 1993</a> %H A007348 <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a> %t A007348 pr=-10; Select[Prime[Range[200 ] ], MultiplicativeOrder[pr, # ] == #-1 & ] %o A007348 (PARI) is(n)=gcd(n,10)==1 && znorder(Mod(-10,n))==n-1 \\ _Charles R Greathouse IV_, Nov 25 2014 %Y A007348 Cf. A038880. %Y A007348 Cf. A006883, A097443. %K A007348 nonn %O A007348 1,1 %A A007348 _N. J. A. Sloane_, _Mira Bernstein_, _Robert G. Wilson v_ %E A007348 More terms from _N. J. A. Sloane_, Apr 24 2005 %E A007348 Edited by _N. J. A. Sloane_, Aug 29 2008 at the suggestion of R. J. Mathar %E A007348 A&S reference and Mathematica program corrected by _T. D. Noe_, Nov 04 2009