This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007359 M0143 #53 Dec 31 2020 18:31:06 %S A007359 1,0,1,1,1,2,1,3,2,3,3,5,4,6,5,5,8,9,10,11,11,10,14,18,19,18,20,20,25, %T A007359 30,35,34,32,32,43,43,57,56,51,55,67,78,87,87,80,82,97,125,128,127, %U A007359 128,127,146,182,191,185,184,193,213,263,290,279,258,271,312,354,404,402 %N A007359 Number of partitions of n into pairwise coprime parts that are >= 2. %C A007359 This sequence is of interest for group theory. The partitions counted by a(n) correspond to conjugacy classes of optimal order of the symmetric group of n elements: they have no fixed point, their order is the direct product of their cycle lengths and they are not contained in a subgroup of Sym_p for p < n. A123131 gives the maximum order (LCM) reachable by these partitions. %D A007359 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007359 Fausto A. C. Cariboni, <a href="/A007359/b007359.txt">Table of n, a(n) for n = 0..750</a> (terms 0..400 from Alois P. Heinz) %H A007359 M. LeBrun & D. Hoey, <a href="/A007359/a007359.pdf">Emails</a> %F A007359 a(n) = A051424(n) - A051424(n-1). - _Vladeta Jovovic_, Dec 11 2004 %e A007359 The a(17) = 9 strict partitions into pairwise coprime parts that are greater than 1 are (17), (15,2), (14,3), (13,4), (12,5), (11,6), (10,7), (9,8), (7,5,3,2). - _Gus Wiseman_, Apr 14 2018 %p A007359 with(numtheory): %p A007359 b:= proc(n, i, s) option remember; local f; %p A007359 if n=0 then 1 %p A007359 elif i<2 then 0 %p A007359 else f:= factorset(i); %p A007359 b(n, i-1, select(x-> is(x<i), s)) +`if`(i<=n and f intersect s={}, %p A007359 b(n-i, i-1, select(x-> is(x<i), s union f)), 0) %p A007359 fi %p A007359 end: %p A007359 a:= n-> b(n, n, {}): %p A007359 seq(a(n), n=0..80); # _Alois P. Heinz_, Mar 14 2012 %t A007359 b[n_, i_, s_] := b[n, i, s] = Module[{f}, If[n == 0 || i == 1, 1, If[i<2, 0, f = FactorInteger[i][[All, 1]]; b[n, i-1, Select[s, #<i&]]+If[i <= n && f ~Intersection~ s == {}, b[n-i, i-1, Select[s ~Union~ f, #<i&]], 0]]]]; a[n_] := b[n, n, {}]-b[n-1, n-1, {}]; Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Feb 17 2014, after _Alois P. Heinz_ *) %t A007359 Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&(Length[#]===1||CoprimeQ@@#)&]],{n,20}] (* _Gus Wiseman_, Apr 14 2018 *) %Y A007359 Cf. A000837, A007359, A007360, A051424, A101268, A123131, A184956, A187718, A289508, A289509, A298748, A302569, A302696, A302698, A302797. %K A007359 nonn,easy %O A007359 0,6 %A A007359 _N. J. A. Sloane_ and _Mira Bernstein_, following a suggestion from _Marc LeBrun_, Apr 28 1994 %E A007359 More precise definition from _Vladeta Jovovic_, Dec 11 2004 %E A007359 More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 13 2005