This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007363 M2505 #31 May 26 2020 21:58:16 %S A007363 0,1,3,5,20,168,11748,12160647 %N A007363 Maximal self-dual antichains on n points. %C A007363 From _Gus Wiseman_, Jul 02 2019: (Start) %C A007363 If self-dual means (pairwise) intersecting, then a(n) is the number of maximal intersecting antichains of nonempty subsets of {1..(n - 1)}. A set of sets is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint. For example, the a(2) = 1 through a(5) = 20 maximal intersecting antichains are: %C A007363 {1} {1} {1} {1} %C A007363 {2} {2} {2} %C A007363 {12} {3} {3} %C A007363 {123} {4} %C A007363 {12}{13}{23} {1234} %C A007363 {12}{13}{23} %C A007363 {12}{14}{24} %C A007363 {13}{14}{34} %C A007363 {23}{24}{34} %C A007363 {12}{134}{234} %C A007363 {13}{124}{234} %C A007363 {14}{123}{234} %C A007363 {23}{124}{134} %C A007363 {24}{123}{134} %C A007363 {34}{123}{124} %C A007363 {12}{13}{14}{234} %C A007363 {12}{23}{24}{134} %C A007363 {13}{23}{34}{124} %C A007363 {14}{24}{34}{123} %C A007363 {123}{124}{134}{234} %C A007363 (End) %D A007363 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007363 Daniel E. Loeb, <a href="http://www.labri.u-bordeaux.fr/~loeb/vote.html">On Games, Voting Schemes and Distributive Lattices</a>. LaBRI Report 625-93, University of Bordeaux I, 1993. [Broken link] %F A007363 For n > 0, a(n) = A326363(n - 1) - 1 = A326362(n - 1) + n - 1. - _Gus Wiseman_, Jul 03 2019 %t A007363 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; %t A007363 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A007363 Table[Length[fasmax[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}] (* _Gus Wiseman_, Jul 02 2019 *) %t A007363 (* 2nd program *) %t A007363 n = 2^6; g = CompleteGraph[n]; i = 0; %t A007363 While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]]; %t A007363 sets = FindClique[g, Infinity, All]; %t A007363 Length[sets]-1 (* _Elijah Beregovsky_, May 06 2020 *) %Y A007363 Intersecting antichains are A326372. %Y A007363 Intersecting antichains of nonempty sets are A001206. %Y A007363 Unlabeled intersecting antichains are A305857. %Y A007363 Maximal antichains of nonempty sets are A326359. %Y A007363 The case with empty edges allowed is A326363. %Y A007363 Cf. A000372, A305844, A306007, A326358, A326361, A326362, A326366. %K A007363 nonn,more %O A007363 1,3 %A A007363 _N. J. A. Sloane_ %E A007363 a(8) from _Elijah Beregovsky_, May 06 2020