This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007387 M0426 #39 Sep 08 2022 08:44:35 %S A007387 0,2,3,2,5,2,7,2,9,7,11,14,13,23,20,34,34,47,57,67,91,101,138,158,205, %T A007387 249,306,387,464,592,713,898,1100,1362,1692,2075,2590,3175,3952,4867, %U A007387 6027,7457,9202,11409,14069,17436,21526,26638,32935,40707,50371,62233 %N A007387 Number of 3rd-order maximal independent sets in cycle graph. %D A007387 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A007387 R. Yanco and A. Bagchi, "K-th order maximal independent sets in path and cycle graphs," J. Graph Theory, submitted, 1994. %H A007387 Harvey P. Dale, <a href="/A007387/b007387.txt">Table of n, a(n) for n = 1..1000</a> %H A007387 R. Yanco, <a href="/A007380/a007380.pdf">Letter and Email to N. J. A. Sloane, 1994</a> %H A007387 R. Yanco and A. Bagchi, <a href="/A007380/a007380_1.pdf">K-th order maximal independent sets in path and cycle graphs</a>, Unpublished manuscript, 1994. (Annotated scanned copy) %F A007387 For n >= 9: a(n) = a(n-2) + a(n-5) per A133394. - G. Reed Jameson (Reedjameson(AT)yahoo.com), Dec 13 2007, Dec 16 2007 %F A007387 G.f.: x^2*(2 + 3*x + 2*x^3 - 3*x^6)/(1 - x^2 - x^5). - _R. J. Mathar_, Oct 30 2009 %F A007387 a(n) = Sum_{j=0..floor((n-g)/(2*g))} (2*n/(n-2*(g-2)*j-(g-2))) * Hypergeometric2F1([-(n-2g*j-g)/2,-(2j+1)], [1], 1), with g = 5, n >= g, and n an odd integer. - _Richard Turk_, Oct 14 2019 %p A007387 seq(coeff(series(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5), x, n+1), x, n), n = 1..50); # _G. C. Greubel_, Oct 19 2019 %t A007387 Rest[CoefficientList[Series[x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5), {x, 0, 50}], x]] (* _Harvey P. Dale_, Oct 23 2011 *) %o A007387 (PARI) my(x='x+O('x^50)); concat([0], Vec(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5))) \\ _G. C. Greubel_, Oct 19 2019 %o A007387 (Magma) R<x>:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!( x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5) )); // _G. C. Greubel_, Oct 19 2019 %o A007387 (Sage) %o A007387 def A007387_list(prec): %o A007387 P.<x> = PowerSeriesRing(ZZ, prec) %o A007387 return P(x^2*(2+3*x+2*x^3-3*x^6)/(1-x^2-x^5)).list() %o A007387 a=A007387_list(50); a[1:] # _G. C. Greubel_, Oct 19 2019 %Y A007387 Cf. A001608, A007388, A007389. %K A007387 nonn %O A007387 1,2 %A A007387 _N. J. A. Sloane_, _Mira Bernstein_ %E A007387 More terms from _Harvey P. Dale_, Oct 23 2011