A007389 7th-order maximal independent sets in cycle graph.
0, 2, 3, 2, 5, 2, 7, 2, 9, 2, 11, 2, 13, 2, 15, 2, 17, 11, 19, 22, 21, 35, 23, 50, 25, 67, 36, 86, 58, 107, 93, 130, 143, 155, 210, 191, 296, 249, 403, 342, 533, 485, 688, 695, 879, 991, 1128, 1394, 1470, 1927, 1955, 2615, 2650, 3494, 3641, 4622, 5035, 6092, 6962, 8047
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, J. Graph Theory, submitted, 1994, apparently unpublished.
Links
- Richard Turk, Notes on proposed formula
- R. Yanco, Letter and Email to N. J. A. Sloane, 1994
- R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
Formula
Empirical g.f.: x^2*(7*x^14 + 5*x^12 + 3*x^10 - 2*x^7 - 2*x^5 - 2*x^3 - 3*x - 2) / (x^9 + x^2 - 1). - Colin Barker, Mar 29 2014
Theorem: a(n) = Sum_{j=0..floor((n-g)/(2*g))} (2*n/(n-2*(g-2)*j-(g-2))) * Hypergeometric2F1([-(n-2g*j-g)/2,-(2j+1)], [1], 1), g = 9, n >= g and n an odd integer. - Richard Turk, Oct 14 2019 For proof see attached text file.