cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007396 Add 2, then reverse digits!.

This page as a plain text file.
%I A007396 M0983 #36 Jul 08 2025 17:03:50
%S A007396 0,2,4,6,8,1,3,5,7,9,11,31,33,53,55,75,77,97,99,101,301,303,503,505,
%T A007396 705,707,907,909,119,121,321,323,523,525,725,727,927,929,139,141,341,
%U A007396 343,543,545,745,747,947,949,159,161,361,363,563,565,765,767,967,969,179
%N A007396 Add 2, then reverse digits!.
%C A007396 At 6, the sequence becomes periodic with period 81. [_T. D. Noe_, Oct 05 2008]
%D A007396 J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 15.
%D A007396 David Singmaster, Proposer, Elementary Problem E3254, Amer. Math. Monthly, Vol. 97, No. 10, December 1990, pages 922-924. [_N. J. A. Sloane_, Jun 20 2023]
%D A007396 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A007396 T. D. Noe, <a href="/A007396/b007396.txt">Table of n, a(n) for n = 0..1000</a>
%H A007396 Nick Hobson, <a href="/A007396/a007396.py.txt">Python program for this sequence</a>
%H A007396 <a href="/index/Rec#order_81">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
%t A007396 s=0; Join[{s}, Table[s=FromDigits[Reverse[IntegerDigits[2+s]]], {100}]] (* _T. D. Noe_, Oct 05 2008 *)
%t A007396 NestList[FromDigits[Reverse[IntegerDigits[#+2]]]&,0,100]  (* _Harvey P. Dale_, Mar 13 2011 *)
%t A007396 NestList[IntegerReverse[#+2]&,0,100] (* _Harvey P. Dale_, Dec 01 2024 *)
%Y A007396 Cf. A117521. [_T. D. Noe_, Oct 05 2008]
%K A007396 nonn,base,easy
%O A007396 0,2
%A A007396 _N. J. A. Sloane_
%E A007396 More terms from _Jon E. Schoenfield_ and _John W. Layman_, Mar 27 2010