This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007428 M2271 #52 Mar 18 2022 00:30:08 %S A007428 1,-3,-3,3,-3,9,-3,-1,3,9,-3,-9,-3,9,9,0,-3,-9,-3,-9,9,9,-3,3,3,9,-1, %T A007428 -9,-3,-27,-3,0,9,9,9,9,-3,9,9,3,-3,-27,-3,-9,-9,9,-3,0,3,-9,9,-9,-3, %U A007428 3,9,3,9,9,-3,27,-3,9,-9,0,9,-27,-3,-9,9,-27,-3,-3,-3,9,-9,-9,9,-27 %N A007428 Moebius transform applied thrice to sequence 1,0,0,0,.... %C A007428 Dirichlet inverse of A007425. - _R. J. Mathar_, Jul 15 2010 %C A007428 abs(a(n)) is the number of ways to write n=xyz where x,y,z are squarefree numbers. - _Benoit Cloitre_, Jan 02 2018 %D A007428 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007428 Enrique Pérez Herrero, <a href="/A007428/b007428.txt">Table of n, a(n) for n = 1..10000</a> %H A007428 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A007428 Multiplicative with a(p^e) = (3 choose e) (-1)^e. %F A007428 Dirichlet g.f.: 1/zeta(s)^3. %F A007428 From _Enrique Pérez Herrero_, Jul 12 2010: (Start) %F A007428 a(n^3) = A008683(n). %F A007428 a(s) = (-3)^A001221(s) provided s is a squarefree number (A005117). (End) %F A007428 a(A046101(n)) = 0. - _Enrique Pérez Herrero_, Sep 07 2017 %F A007428 a(n) = Sum_{a*b*c=n} mu(a)*mu(b)*mu(c). - _Benedict W. J. Irwin_, Mar 02 2022 %p A007428 möbius := proc(a) local b, i, mo: b := NULL: %p A007428 mo := (m,n) -> `if`(irem(m,n) = 0, numtheory:-mobius(m/n), 0); %p A007428 for i to nops(a) do b := b, add(mo(i,j)*a[j], j=1..i) od: [b] end: %p A007428 (möbius@@3)([1, seq(0, i=1..77)]); # _Peter Luschny_, Sep 08 2017 %t A007428 tau[1,n_Integer]:=1; SetAttributes[tau, Listable]; %t A007428 tau[k_Integer,n_Integer]:=Plus@@(tau[k-1,Divisors[n]])/; k > 1; %t A007428 tau[k_Integer,n_Integer]:=Plus@@(tau[k+1,Divisors[n]]*MoebiusMu[n/Divisors[n]]); k<1; %t A007428 A007428[n_]:=tau[ -3,n]; (* _Enrique Pérez Herrero_, Jul 12 2010 *) %t A007428 a[n_] := Which[n==1, 1, PrimeQ[n], -3, True, Times @@ Map[Function[e, Binomial[3, e] (-1)^e], FactorInteger[n][[All, 2]]]]; %t A007428 Array[a, 100] (* _Jean-François Alcover_, Jun 20 2018 *) %o A007428 (Haskell) %o A007428 a007428 n = product %o A007428 [a007318' 3 e * cycle [1,-1] !! fromIntegral e | e <- a124010_row n] %o A007428 -- _Reinhard Zumkeller_, Oct 09 2013 %o A007428 (PARI) a(n) = {my(f=factor(n)); for (k=1, #f~, e = f[k,2]; f[k,1] = binomial(3, e)*(-1)^e; f[k,2] = 1); factorback(f);} \\ _Michel Marcus_, Jan 03 2018 %o A007428 (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X)^3)[n], ", ")) \\ _Vaclav Kotesovec_, Feb 22 2021 %Y A007428 Consecutive nested Dirichlet convolution: A063524, A008683 or A007427. - _Enrique Pérez Herrero_, Jul 12 2010 %Y A007428 Cf. A124010. %K A007428 sign,easy,nice,mult %O A007428 1,2 %A A007428 _N. J. A. Sloane_