A007432 Moebius transform applied thrice to natural numbers.
1, -1, 0, 1, 2, 0, 4, 1, 3, -2, 8, 0, 10, -4, 0, 2, 14, -3, 16, 2, 0, -8, 20, 0, 13, -10, 8, 4, 26, 0, 28, 4, 0, -14, 8, 3, 34, -16, 0, 2, 38, 0, 40, 8, 6, -20, 44, 0, 31, -13, 0, 10, 50, -8, 16, 4, 0, -26, 56, 0, 58, -28, 12, 8, 20, 0, 64, 14
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Vaclav Kotesovec, Plot of Sum_{k=1..n} a(k) / (108*n^2/Pi^6) for n = 1..1000000
- N. J. A. Sloane, Transforms
Crossrefs
Cf. A007431.
Programs
-
Mathematica
a[p_, e_] := Sum[ (-1)^k*Binomial[3, k]*p^(e - k), {k, 0, Min[e, 3]}]; a[n_] := Times @@ Apply[a, FactorInteger[n], {1}]; a[1] = 1; Table[ a[n], {n, 1, 68}] (* Jean-François Alcover, Dec 28 2011, after formula *)
Formula
Multiplicative with a(p^e) = Sum_{k=0..3} (-1)^k C(3,k)*p^(e-k)[e>=k];
Dirichlet g.f.: zeta(s-1)/zeta^3(s).
a(n) = Sum{d|n} tau_{-3}(d)*n/d = Sum{d|n} tau_{-2}(d)*phi(n/d), where tau_{-3} is A007428 and tau_{-2} is A007427. - Enrique Pérez Herrero, Jan 19 2013
Sum_{k=1..n} a(k) ~ 108 * n^2 / Pi^6. - Vaclav Kotesovec, Nov 04 2018