cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007440 Reversion of g.f. for Fibonacci numbers 1, 1, 2, 3, 5, ....

This page as a plain text file.
%I A007440 M0413 #129 Jul 21 2023 09:16:13
%S A007440 1,-1,0,2,-3,-1,11,-15,-13,77,-86,-144,595,-495,-1520,4810,-2485,
%T A007440 -15675,39560,-6290,-159105,324805,87075,-1592843,2616757,2136539,
%U A007440 -15726114,20247800,32296693,-152909577,145139491,417959049,-1460704685,885536173,4997618808,-13658704994
%N A007440 Reversion of g.f. for Fibonacci numbers 1, 1, 2, 3, 5, ....
%C A007440 Binomial transform of A104565 (reversion of Pell numbers). - _Paul Barry_, Mar 15 2005
%C A007440 From _Paul Barry_, Nov 03 2008: (Start)
%C A007440 Hankel transform of a(n) (starting 0,1,-1,..) is F(n)*(-1)^C(n+1,2).
%C A007440 Hankel transform of a(n+1) is (-1)^C(n+1,2).
%C A007440 Hankel transform of a(n+2) is F(n+2)*(-1)^C(n+2,2).
%C A007440 (End)
%C A007440 The sequence 1,1,-1,0,2,... given by 0^n + Sum_{k=0..floor((n-1)/2)} binomial(n-1,2k)*A000108(k)*(-1)^(n-k-1) has Hankel transform F(n+2)*(-1)^binomial(n+1,2). - _Paul Barry_, Jan 13 2009
%C A007440 Apart from signs, essentially the same as A343773. For odd terms, a(n) = A343773(n-1), while a(n) = -A343773(n-1) if n is even. - _Gennady Eremin_, May 19 2021
%D A007440 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A007440 Gennady Eremin, <a href="/A007440/b007440.txt">Table of n, a(n) for n = 1..800</a> (first 300 terms from Vincenzo Librandi)
%H A007440 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.pdmi.ras.ru/~lowdimma/BSD/abramowitz_and_stegun.pdf">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972 (p. 16, Reversion of Series 3.6.25).
%H A007440 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry1/barry95r.html">Generalized Catalan Numbers, Hankel Transforms and Somos-4 Sequences </a>, J. Int. Seq. 13 (2010) #10.7.2.
%H A007440 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry3/barry132.html">On the Central Coefficients of Bell Matrices</a>, J. Int. Seq. 14 (2011) # 11.4.3, page 7.
%H A007440 Paul Barry, <a href="https://arxiv.org/abs/2104.01644">Centered polygon numbers, heptagons and nonagons, and the Robbins numbers</a>, arXiv:2104.01644 [math.CO], 2021.
%H A007440 Gennady Eremin, <a href="https://arxiv.org/abs/2108.10676">Walking in the OEIS: From Motzkin numbers to Fibonacci numbers. The "shadows" of Motzkin numbers</a>, arXiv:2108.10676 [math.CO], 2021.
%H A007440 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A007440 D-finite with recurrence (n+3)*a(n+2) = -(2*n + 3)*a(n+1) - 5*n*a(n), a(1) = 1, a(2) = -1.
%F A007440 G.f.: A(x) = (-1 - x + sqrt(1 + 2*x + 5*x^2))/(2*x).
%F A007440 a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*C(k)*(-1)^(n-k), where C(n) is A000108(n). - _Paul Barry_, May 16 2005
%F A007440 a(n) = (5^((n+1)/2)*LegendreP(n-1,-1/sqrt(5)) + 5^(n/2)*LegendreP(n,-1/sqrt(5)))/(2*n+2). - _Mark van Hoeij_, Jul 02 2010
%F A007440 a(n) = 2^(-n-1)*Sum_{k=floor((n-1)/2)..n} binomial(k+1,n-k)*5^(n-k)*(-1)^k*C(k), n > 0, where C(k) is A000108. - _Vladimir Kruchinin_, Sep 21 2010
%F A007440 G.f.: (G(0)-x-1)/(x^2) = 1/G(0) where G(k) = 1 + x + x^2/G(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Dec 25 2011
%F A007440 From _Peter Bala_, Jun 23 2015: (Start)
%F A007440 Lucas(n) = [x^n] (x/A(x))^n for n >= 1.
%F A007440 -1/A(-x) = 1/x - 1 + x + x^2 - 2*x^4 - 3*x^5 + x^6 + 11*x^7 + 15*x^8 - 13*x^9 + ... is the Laurent series generating function for A214649. (End)
%F A007440 a(n) = (-1)^n*hypergeom([1/2 - n/2, -n/2], [2], -4). - _Peter Luschny_, Mar 19 2018
%F A007440 From _Gennady Eremin_, May 09 2021: (Start)
%F A007440 a(n) = -(-1)^n * A343773(n-1), n > 0.
%F A007440 G.f.: A(x) = x*B(-x), where B(x) is the g.f. of A343773.
%F A007440 Limit_{n->infinity} a(n)/A001006(n) = 0. (End)
%F A007440 G.f. A(x) satisfies A(x) + 1 + x^-1 = 1/A(x). - _Gennady Eremin_, May 29 2021
%e A007440 G.f. = x - x^2 + 2*x^4 - 3*x^5 - x^6 + 11*x^7 - 15*x^8 - 13*x^9 + 77*x^10 - 86*x^11 - 144*x^12 + ...
%p A007440 A007440 := n -> (-1)^(n+1)*hypergeom([1 - n/2, 1/2 -n/2], [2], -4):
%p A007440 seq(simplify(A007440(n)), n=1..35); # _Peter Luschny_, Mar 19 2018, adapted to offset Jul 21 2023
%p A007440 # Using function CompInv from A357588.
%p A007440 CompInv(25, n -> combinat:-fibonacci(n)); # _Peter Luschny_, Oct 07 2022
%t A007440 a[1] = 1; a[2] = -1; a[n_] := a[n] = (-5*(n-2)*a[n-2] + (1-2*n)*a[n-1])/(n+1); Array[a, 36] (* _Jean-François Alcover_, Apr 18 2014 *)
%t A007440 Rest[CoefficientList[Series[(-1-x+Sqrt[1+2*x+5*x^2])/(2*x),{x,0,20}],x]] (* _Vaclav Kotesovec_, Apr 25 2015 *)
%o A007440 (PARI) a(n)=polcoeff((-1-x+sqrt(1+2*x+5*x^2+x^2*O(x^n)))/(2*x),n)
%o A007440 (PARI) Vec(serreverse(x/(1-x-x^2)+O(x^66))) /* _Joerg Arndt_, Aug 19 2012 */
%o A007440 (Sage)
%o A007440 def A007440_list(len):
%o A007440     T = [0]*(len+1); T[1] = 1; R = [1]
%o A007440     for n in (1..len-1):
%o A007440         a,b,c = 1,0,0
%o A007440         for k in range(n,-1,-1):
%o A007440             r = a - b - c
%o A007440             if k < n : T[k+2] = u;
%o A007440             a,b,c = T[k-1],a,b
%o A007440             u = r
%o A007440         T[1] = u; R.append(u)
%o A007440     return R
%o A007440 A007440_list(36) # _Peter Luschny_, Nov 01 2012
%o A007440 (Python)
%o A007440 A007440 = [0, 1, -1]
%o A007440 for n in range(3, 801):
%o A007440     A007440.append( (-(2*n-1)*A007440[-1]
%o A007440       - 5*(n-2)*A007440[-2])//(n+1) )
%o A007440 for n in range(1, 801):
%o A007440     print(n, A007440[n])  # _Gennady Eremin_, May 10 2021
%Y A007440 Cf. A000045, A000032, A214649, A291535, A343773.
%K A007440 sign
%O A007440 1,4
%A A007440 _N. J. A. Sloane_, May 24 1994
%E A007440 Extended and signs added by _Olivier Gérard_
%E A007440 Second formula adapted to offset by _Vaclav Kotesovec_, Apr 25 2015