This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007462 M1274 #30 Oct 07 2017 00:09:00 %S A007462 0,1,2,4,14,38,118,338,1006,2990,8974,26862,80510,241390,723934, %T A007462 2171046,6512910,19536974,58608782,175821710,527470318,1582385678, %U A007462 4747139342,14241362318,42724100334,128172182990,384516408110,1153548740206,3460645850030,10381936700110 %N A007462 Shifts left under XOR-convolution with itself. %D A007462 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007462 Alois P. Heinz, <a href="/A007462/b007462.txt">Table of n, a(n) for n = 0..1000</a> %H A007462 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A007462 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %F A007462 a(n) ~ c * 3^n, where c = 0.151273188266276362886260408769663538575624024971525940842364624... . - _Vaclav Kotesovec_, Sep 10 2014 %p A007462 with(Bits): %p A007462 a:= proc(n) option remember; %p A007462 `if`(n<2, n, add(Xor(a(i), a(n-1-i)), i=0..n-1)) %p A007462 end: %p A007462 seq(a(n), n=0..30); # _Alois P. Heinz_, Jun 22 2012 %t A007462 a[0]=0; a[1]=1; a[n_] := a[n] = Sum[BitXor[a[k], a[n-k-1]], {k, 0, n-1}]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Sep 07 2012, after _Alois P. Heinz_ *) %o A007462 (Haskell) %o A007462 import Data.Bits (xor) %o A007462 a007462 n = a007462_list !! n %o A007462 a007462_list = 0 : 1 : f [1,0] where %o A007462 f xs = y : f (y : xs) where %o A007462 y = sum $ zipWith xor xs $ reverse xs :: Integer %o A007462 -- _Reinhard Zumkeller_, Jul 15 2012 %Y A007462 Cf. A192484, A199770. %K A007462 nonn,nice,eigen %O A007462 0,3 %A A007462 _N. J. A. Sloane_