This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007466 M3478 #87 May 07 2025 23:09:15 %S A007466 1,4,14,44,128,352,928,2368,5888,14336,34304,80896,188416,434176, %T A007466 991232,2244608,5046272,11272192,25034752,55312384,121634816, %U A007466 266338304,580911104,1262485504,2734686208,5905580032,12717129728 %N A007466 Exponential-convolution of natural numbers with themselves. %C A007466 Define a triangle T by T(n,1) = n*(n-1)+1 and T(r,c) = T(r,c-1) + T(r-1,c-1), then a(n) = T(n,n). - _J. M. Bergot_, Mar 03 2013 %C A007466 From _David Callan_, Jul 11 2014: (Start) %C A007466 With offset 0, a(n) is the number of 2 X n 0-1 matrices that do not contain %C A007466 1 1 0 0 %C A007466 0 0 or 1 1, as a 2 X 2 submatrix, %C A007466 See Ju and Seo link, Theorem 3.2. (End) %C A007466 a(n) is the sum of all ways of adding the k-tuples of the terms in the (n-1)-st row of Pascal's triangle A007318. For n=4 take row 3 of A007318: 1,3,3,1, giving (1)+(3)+(3)+(1)=8; (1+3)+(3+3)+(3+1)=14; (1+3+3)+(3+3+1)=14; (1+3+3+1)=8. The sum of these four terms is 8+14+14+8=44. - _J. M. Bergot_, Jun 17 2017 %C A007466 Binomial transform of A002061. - _Jules Beauchamp_, Jan 04 2022 %C A007466 a(n+1) is the number of strings of length n defined on {0,1,2,3} that contain at most one 2, at most one 3, and have no restriction on the number of 0s and 1s. For example, for n=2, a(3)=14 since from the 16 strings of length 2 we exclude 22 and 33. - _Enrique Navarrete_, May 03 2025 %D A007466 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007466 Reinhard Zumkeller, <a href="/A007466/b007466.txt">Table of n, a(n) for n = 1..1000</a> %H A007466 M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002. %H A007466 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A007466 Hyeong-Kwan Ju and Seunghyun Seo, <a href="http://arxiv.org/abs/1107.1299">Enumeration of 0/1-matrices avoiding some 2x2 matrices</a>, arXiv:1107.1299 [math.CO], 2011. %H A007466 Hyeong-Kwan Ju and Seunghyun Seo, <a href="http://dx.doi.org/10.1016/j.disc.2012.04.019">Enumeration of (0,1)-matrices avoiding some 2 X 2 matrices</a>, Discrete Math., 312 (2012), 2473-2481. %H A007466 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A007466 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,8). %F A007466 E.g.f.: (Sum_{n >= 1} n*x^(n-1)/(n-1)!)^2. %F A007466 a(n) = 2^(n-1)*n + 2^(n-3)*(n-1)*(n-2). %F A007466 a(n) = Sum_{k=0..(n+2)} C(n+2, k) * floor(k/2)^2. - _Paul Barry_, Mar 06 2003 %F A007466 E.g.f.: (1+x)^2*exp(2*x). - _Vladeta Jovovic_, Sep 09 2003 %F A007466 G.f.: x*(1 - 2*x + 2*x^2)/(1-2*x)^3. - _Vladimir Kruchinin_, Sep 28 2011 %F A007466 E.g.f.: U(0) where U(k)= 1 + 2*x/( 1 - x/(2 + x - 4/( 2 + x*(k+1)/U(k+1)))) ; (continued fraction, 3rd kind, 4-step). - _Sergei N. Gladkovskii_, Oct 28 2012 %F A007466 a(n) = A228643(n, n). - _Reinhard Zumkeller_, Aug 29 2013 %F A007466 a(n) = Sum_{k=0..n-1} A141611(n-1, k). - _G. C. Greubel_, Sep 22 2024 %p A007466 A007466:=n->2^(n-1)*n+1/4*2^(n-1)*(n-1)*(n-2): seq(A007466(n), n=1..30); %t A007466 Table[2^(n-1)*(n + (n-1)*(n-2)/4), {n, 30}] (* _Wesley Ivan Hurt_, Jul 11 2014 *) %o A007466 (Haskell) %o A007466 a007466 n = a228643 n n -- _Reinhard Zumkeller_, Aug 29 2013 %o A007466 (Magma) [2^(n-1)*(n+(n-1)*(n-2)/4) : n in [1..30]]; // _Wesley Ivan Hurt_, Jul 11 2014 %o A007466 (SageMath) %o A007466 def A007466(n): return 2^(n-3)*(n^2+n+2) %o A007466 [A007466(n) for n in range(1,31)] # _G. C. Greubel_, Sep 22 2024 %Y A007466 Cf. A002061, A007318, A141611, A228643. %K A007466 nonn,easy %O A007466 1,2 %A A007466 _N. J. A. Sloane_