cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007467 Product of next n primes.

This page as a plain text file.
%I A007467 M2085 #33 Feb 15 2021 16:03:47
%S A007467 2,15,1001,215441,95041567,66238993967,63009974049301,
%T A007467 87796770491685553,173955570033393401009,421385360593324054690769,
%U A007467 1172248885422611971256631487,5253333091597988325086927419397,21476254926032216698855019795863013
%N A007467 Product of next n primes.
%D A007467 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A007467 Harvey P. Dale, <a href="/A007467/b007467.txt">Table of n, a(n) for n = 1..185</a>
%H A007467 Ronald K. Hoeflin, <a href="https://web.archive.org/web/20080731175458/http://www.eskimo.com/~miyaguch/titan.html">Titan Test</a>.
%F A007467 From _Amiram Eldar_, Nov 15 2020: (Start)
%F A007467 Sum_{n>=1} 1/a(n) = A139395.
%F A007467 Sum_{n>=1} (-1)^(n+1)/a(n) = A238234 = 1 - A139396. (End)
%t A007467 terms=20;With[{prs=Prime[Range[(terms(terms+1))/2]]},Table[ Times@@ Take[prs,{(n(n-1))/2+1,(n(n+1))/2}],{n,terms}]] (* _Harvey P. Dale_, Aug 06 2013 *)
%t A007467 With[{nn=40},Times@@@TakeList[Prime[Range[(nn(nn+1))/2]],Range[nn]]] (* Requires Mathematica version 11 or later *) (* _Harvey P. Dale_, Jan 15 2020 *)
%o A007467 (PARI) a(n)=my(s=1);forprime(p=prime(n*(n-1)/2+1),prime(n*(n+1)/2),s*=p);s \\ _Charles R Greathouse IV_, Aug 06 2013
%o A007467 (Python)
%o A007467 from math import prod
%o A007467 from sympy import prime
%o A007467 def a(n): return prod(prime(i) for i in range((n-1)*n//2+1, n*(n+1)//2+1))
%o A007467 print([a(n) for n in range(1, 14)]) # _Michael S. Branicky_, Feb 15 2021
%Y A007467 Cf. A139395, A139396, A238234.
%K A007467 easy,nonn
%O A007467 1,1
%A A007467 _N. J. A. Sloane_, _Simon Plouffe_
%E A007467 Corrected and extended by _Harvey P. Dale_, Aug 06 2013