This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007472 M2812 #57 Apr 25 2025 16:52:37 %S A007472 1,1,1,3,9,29,105,431,1969,9785,52145,296155,1787385,11428949, %T A007472 77124569,546987143,4062341601,31502219889,254500383457,2137863653811, %U A007472 18639586581097,168387382189709,1573599537048265,15189509662516063,151243491212611217,1551565158004180137 %N A007472 Shifts 2 places left when binomial transform is applied twice with a(0) = a(1) = 1. %D A007472 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007472 Alois P. Heinz, <a href="/A007472/b007472.txt">Table of n, a(n) for n = 0..576</a> %H A007472 M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some canonical sequences of integers</a>, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A007472 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A007472 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A007472 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 2*x)) / (1 - 2*x). - _Ilya Gutkovskiy_, Jan 30 2022 %F A007472 E.g.f.: (BesselK(0, 1) + BesselK(1, 1)) * BesselI(0, exp(x)) + (BesselI(1, 1) - BesselI(0, 1)) * BesselK(0, exp(x)). - _Ven Popov_, Apr 25 2025 %p A007472 bintr:= proc(p) local b; %p A007472 b:= proc(n) option remember; add(p(k)*binomial(n,k), k=0..n) end %p A007472 end: %p A007472 b:= (bintr@@2)(a): %p A007472 a:= n-> `if`(n<2, 1, b(n-2)): %p A007472 seq(a(n), n=0..30); # _Alois P. Heinz_, Oct 18 2012 %t A007472 bintr[p_] := Module[{b}, b[n_] := b[n] = Sum [p[k]*Binomial[n, k], {k, 0, n}]; b]; b = a // bintr // bintr; a[n_] := If[n<2, 1, b[n-2]]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Jan 27 2014, after _Alois P. Heinz_ *) %t A007472 (* another program *) %t A007472 B[x_] := (BesselK[0, 1] + BesselK[1, 1])*BesselI[0, Exp[x]] + (BesselI[1, 1] - BesselI[0, 1])*BesselK[0, Exp[x]]; %t A007472 a[n_] := SeriesCoefficient[FullSimplify[Series[B[x], {x, 0, n}]],n] n! %t A007472 Table[a[n], {n, 0, 30}] (* _Ven Popov_, Apr 25 2025 *) %Y A007472 Cf. A351028, A351143. %Y A007472 Row sums of triangle A383235. %K A007472 nonn,nice,eigen %O A007472 0,4 %A A007472 _N. J. A. Sloane_