This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007473 M0765 #29 Feb 16 2025 08:32:31 %S A007473 1,1,2,3,6,10,19,33,60,104,184,316,548 %N A007473 Dimension of space of Vassiliev knot invariants of order n. %D A007473 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007473 Dror Bar-Natan, <a href="https://doi.org/10.1016/0040-9383(95)93237-2">On the Vassiliev Knot Invariants</a>, Topology 34 (1995) 423-472. %H A007473 Dror Bar-Natan, <a href="http://www.math.toronto.edu/~drorbn/VasBib/VasBib.html">Bibliography of Vassiliev Invariants</a> %H A007473 D. J. Broadhurst, <a href="http://arXiv.org/abs/q-alg/9709031">Conjectured enumeration of Vassiliev invariants</a>, arXiv:q-alg/9709031, 1997. %H A007473 Maksim Karev, <a href="https://arxiv.org/abs/2307.00468">On the primitive subspace of Lando framed graph bialgebra</a>, arXiv:2307.00468 [math.CO], 2023. %H A007473 Jan Kneissler, <a href="http://arxiv.org/abs/q-alg/9706022">The number of primitive Vassiliev invariants of degree up to 12</a>, arXiv:q-alg/9706022, 1997. %H A007473 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VassilievInvariant.html">Vassiliev Invariant.</a> %H A007473 <a href="/index/K#knots">Index entries for sequences related to knots</a> %F A007473 G.f.: Product_{ m >= 1 } (1-y^m)^(-A007478(m)). - _Andrey Zabolotskiy_, Sep 19 2017 %F A007473 Broadhurst gives a conjectured explicit g.f. (different from A014595). %Y A007473 Cf. A007293 (first differences), A007478, A014595 (conjectured continuation). %K A007473 hard,nonn,nice %O A007473 0,3 %A A007473 _N. J. A. Sloane_ %E A007473 Description corrected by _Sergei Duzhin_, Aug 29 2000