This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007487 M5460 #72 Jul 17 2025 20:14:13 %S A007487 0,1,513,20196,282340,2235465,12313161,52666768,186884496,574304985, %T A007487 1574304985,3932252676,9092033028,19696532401,40357579185,78800938560, %U A007487 147520415296,266108291793,464467582161,787155279940,1299155279940,2093435326521,3300704544313 %N A007487 Sum of 9th powers. %D A007487 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 815. %D A007487 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007487 T. D. Noe, <a href="/A007487/b007487.txt">Table of n, a(n) for n = 0..1000</a> %H A007487 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A007487 Bruno Berselli, A description of the recursive method in Formula lines (second formula): website <a href="http://www.lanostra-matematica.org/2008/12/sequenze-numeriche-e-procedimenti.html">Matem@ticamente</a> (in Italian). %H A007487 Feihu Liu, Guoce Xin, and Chen Zhang, <a href="https://arxiv.org/abs/2412.18744">Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS</a>, arXiv:2412.18744 [math.CO], 2024. See p. 13. %H A007487 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerSum.html">Power Sum</a>. %H A007487 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1). %F A007487 a(n) = n^2*(n+1)^2*(n^2+n-1)*(2*n^4+4*n^3-n^2-3*n+3)/20 (see MathWorld, Power Sum, formula 39). a(n) = n*A000542(n) - Sum_{i=0..n-1} A000542(i). - _Bruno Berselli_, Apr 26 2010 %F A007487 G.f.: x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(1-x)^11. a(n) = a(-n-1). - _Bruno Berselli_, Aug 23 2011 %F A007487 a(n) = -Sum_{j=1..9} j*Stirling1(n+1,n+1-j)*Stirling2(n+9-j,n). - _Mircea Merca_, Jan 25 2014 %F A007487 a(n) = (16/5)*A000217(n)^5 - 4*A000217(n)^4 + (12/5)*A000217(n)^3 - (3/5)*A000217(n)^2. - _Michael Raney_, Mar 14 2016 %F A007487 a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n > 10. - _Wesley Ivan Hurt_, Dec 21 2016 %F A007487 a(n) = 288*A005585(n-1)^2 + 1728*A108679(n-3) + A062392(n)^2. - _Yasser Arath Chavez Reyes_, May 11 2024 %F A007487 a(n) = Sum_{i=1..n} J_9(i)*floor(n/i), where J_9 is A069094. - _Ridouane Oudra_, Jul 17 2025 %p A007487 [seq(add(i^9,i=1..n),n=0..40)]; %p A007487 a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^9 od: seq(a[n], n=0..22); # _Zerinvary Lajos_, Feb 22 2008 %t A007487 lst={};s=0;Do[s=s+n^9;AppendTo[lst, s], {n, 10^2}];lst..or..Table[Sum[k^9, {k, 1, n}], {n, 0, 100}] (* _Vladimir Joseph Stephan Orlovsky_, Aug 14 2008 *) %t A007487 Accumulate[Range[0,30]^9] (* _Harvey P. Dale_, Oct 09 2016 *) %o A007487 (Magma) [&+[n^9: n in [0..m]]: m in [0..22]]; // _Bruno Berselli_, Aug 23 2011 %o A007487 (Python) %o A007487 A007487_list, m = [0], [362880, -1451520, 2328480, -1905120, 834120, -186480, 18150, -510, 1, 0, 0] %o A007487 for _ in range(10**2): %o A007487 for i in range(10): %o A007487 m[i+1]+= m[i] %o A007487 A007487_list.append(m[-1]) # _Chai Wah Wu_, Nov 05 2014 %o A007487 (PARI) a(n)=n^2*(n+1)^2*(n^2+n-1)*(2*n^4+4*n^3-n^2-3*n+3)/20 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A007487 Row 9 of array A103438. %Y A007487 Cf. A000217, A000542, A069094. %K A007487 nonn,easy %O A007487 0,3 %A A007487 _N. J. A. Sloane_