This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007496 M0497 #46 Feb 04 2022 09:51:12 %S A007496 0,1,2,3,4,5,6,7,9,18,33 %N A007496 Numbers n such that the decimal expansions of 2^n and 5^n contain no 0's (probably 33 is last term). %C A007496 Intersection of A007377 and A008839. - _Lekraj Beedassy_, Jul 27 2004 %C A007496 From _Jonathan Vos Post_, Jul 20 2005: (Start) %C A007496 Equivalently, numbers n such that 10^n is the product of two integers without any zero digits. %C A007496 10^0 = 1 * 1 %C A007496 10^1 = 2 * 5 %C A007496 10^2 = 4 * 25 %C A007496 10^3 = 8 * 125 %C A007496 10^4 = 16 * 625 %C A007496 10^5 = 32 * 3125 %C A007496 10^6 = 64 * 15625 %C A007496 10^7 = 128 * 78125 %C A007496 10^9 = 512 * 1953125 %C A007496 10^18 = 262144 * 3814697265625 %C A007496 10^33 = 8589934592 * 116415321826934814453125. (End) %C A007496 Searched for n up to 10^10. - _David Radcliffe_, Dec 27 2015 %D A007496 J. S. Madachy, Madachy's Mathematical Recreation, "#2. Number Toughies", pp. 126-8, Dover NY 1979. %D A007496 C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory. Oxford Univ. Press, 1966, p. 89. %D A007496 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007496 Leroy C. Dalton & Henry D. Snyder, <a href="http://files.eric.ed.gov/fulltext/ED079163.pdf">Topics for Mathematics Clubs</a>, pp. 68-69, NCTM Reston VA 1983. %H A007496 G. P. Michon, <a href="http://www.numericana.com/answer/numeration.htm#nozero">What two integers without zero digits have a product of 1000000000</a>? %H A007496 C. S. Ogilvy and J. T. Anderson, <a href="/A007496/a007496.pdf">Excursions in Number Theory</a>, Oxford Univ. Press, 1966, p. 89. (Annotated scanned copy). %H A007496 W. Schneider, <a href="/A007496/a007496.html">NoZeros: Powers n^k without Digit Zero</a> [Cached copy] %p A007496 q:= n-> andmap(t-> not 0 in convert(t, base, 10), [2^n, 5^n]): %p A007496 select(q, [$0..40])[]; # _Alois P. Heinz_, Feb 03 2022 %t A007496 Range@(10^5) // Select[Last@DigitCount@(5^#) == 0 &] // Select[Last@DigitCount@(2^#) == 0 &] (* _Hans Rudolf Widmer_, Feb 02 2022 *) %o A007496 (PARI) isok(n) = vecmin(digits(2^n)) && vecmin(digits(5^n)); \\ _Michel Marcus_, Dec 28 2015 %Y A007496 Cf. A007377, A008839. %K A007496 fini,nonn,full,base %O A007496 1,3 %A A007496 _N. J. A. Sloane_, _Robert G. Wilson v_ %E A007496 Edited by _N. J. A. Sloane_, Oct 24 2009 at the suggestion of _M. F. Hasler_