This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007498 M0592 #46 Aug 06 2024 07:05:54 %S A007498 1,2,3,4,9,10,12,14,19,23,24,36,38,39,48,62,93,106,120,134,150,196, %T A007498 294,317,320,385,586,597,654,738,945,1031,1172,1282,1404,1426,1452, %U A007498 1521,1752,1812,1836,1844,1862,2134,2232,2264,2667,3750,3903,3927,4274,4354 %N A007498 Unique period lengths of primes mentioned in A007615. %C A007498 Let {Zs(m, 10, 1)} be the Zsigmondy numbers for a = 10, b = 1: Zs(m, 10, 1) is the greatest divisor of 10^m - 1^m that is coprime to 10^r - 1^r for all positive integers r < m. Then this sequence gives m such that Zs(m, 10, 1) is a prime power (e.g., Zs(1, 10, 1) = 9 = 3^2, Zs(2, 10, 1) = 11, Zs(3, 10, 1) = 37, Zs(4, 10, 1) = 101). It is very likely that Zs(m, 10, 1) is prime if m > 1 is in this sequence (note that the Mathematica and PARI programs below are based on this assumption). - _Jianing Song_, Aug 12 2020 %D A007498 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A007498 Samuel Yates, Period Lengths of Exactly One or Two Prime Numbers, J. Rec. Math., 18 (1985), 22-24. %H A007498 Ray Chandler, <a href="/A007498/b007498.txt">Table of n, a(n) for n = 1..106</a> %H A007498 Chris K. Caldwell, <a href="http://docplayer.net/43219082-Unique-period-primes-and-the-factorization-of-cyclotomic-polynomials-minus-one.html">Unique (period) primes and the factorization of cyclotomic polynomials minus one</a>, Mathematica Japonica, 26 (1997), 189-195. %H A007498 Chris K. Caldwell & H. Dubner, <a href="https://citeseerx.ist.psu.edu/pdf/b19adc95cabdacbf4bf5b92583fe07eecbd4ea75">Unique-Period Primes</a>, Table 2 in Journal of Recreational Mathematics 29(1) 46 1998. %H A007498 Robert G. Wilson v, <a href="/A007498/a007498.pdf">Notes, n.d.</a> %H A007498 <a href="/index/1#1overn">Index entries for sequences related to decimal expansion of 1/n</a> %t A007498 lst={1}; Do[p=Cyclotomic[n, 10]/GCD[n, Cyclotomic[n, 10]]; If[PrimeQ[p], AppendTo[lst, n]], {n, 3000}]; lst (* _T. D. Noe_, Sep 08 2005 *) %o A007498 (PARI) isok(n) = if (n==1, 1, my(p = polcyclo(n, 10)); isprime(p/gcd(p, n))); \\ _Michel Marcus_, Jun 20 2018 %Y A007498 Cf. A007615, A002371, A048595, A006883, A007732, A051626, A046108. %Y A007498 Cf. A161508 (unique period lengths in base 2). %K A007498 nonn,nice,base %O A007498 1,2 %A A007498 _N. J. A. Sloane_, _Robert G. Wilson v_ %E A007498 More terms from _T. D. Noe_, Sep 08 2005 %E A007498 a(48)-a(52) from _Ray Chandler_, Jul 09 2008