A007507 Decimal expansion of 2^sqrt(2).
2, 6, 6, 5, 1, 4, 4, 1, 4, 2, 6, 9, 0, 2, 2, 5, 1, 8, 8, 6, 5, 0, 2, 9, 7, 2, 4, 9, 8, 7, 3, 1, 3, 9, 8, 4, 8, 2, 7, 4, 2, 1, 1, 3, 1, 3, 7, 1, 4, 6, 5, 9, 4, 9, 2, 8, 3, 5, 9, 7, 9, 5, 9, 3, 3, 6, 4, 9, 2, 0, 4, 4, 6, 1, 7, 8, 7, 0, 5, 9, 5, 4, 8, 6, 7, 6, 0, 9, 1, 8, 0, 0, 0, 5, 1, 9, 6, 4, 1, 6, 9, 4, 1, 9, 8
Offset: 1
Examples
2.6651441426902251886502972498731398482742113137146594928...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 28.
- Eric W. Weisstein, CRC Concise Encyclopedia of Mathematics, CRC Press, 2002, p. 1171.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Aleksandr Gelfond, Sur le septième Problème de Hilbert, Bulletin de l'Académie des Sciences de l'URSS, Classe des sciences mathématiques et na. VII, No. 4 (1934), pp. 623-634.
- David Hilbert, Mathematical Problems, Bull. Amer. Math. Soc., Vol. 37, No. 4 (2000), pp. 407-436. Reprinted from Bull. Amer. Math. Soc., Vol. 8, No. 10 (1902), pp. 437-479. See Problem 7.
- R. O. Kuzmin, On a new class of transcendental numbers" (in Russian), Izvestiya Akademii Nauk SSSR, Ser. matem. 7, No. 6 (1930), pp. 585-597.
- Simon Plouffe, 2**sqrt(2), a transcendental number to 5000 digits.
- Simon Plouffe, 2**sqrt(2), a transcendental number to 2000 digits.
- Theodor Schneider, Transzendenzuntersuchungen periodischer Funktionen I. Transzendenz von Potenzen, J. reine angew. Math., Vol. 172 (1935), pp. 65-69.
- Theodor Schneider, Transzendenzuntersuchungen periodischer Funktionen II. Transzendenzeigenschaften elliptischer Funktionen, J. reine angew. Math., Vol. 172 (1934), pp. 70-74.
- Eric Weisstein's World of Mathematics, Gelfond-Schneider Constant.
- Wikipedia, Gelfond-Schneider constant.
- Wikipedia, Gelfond-Schneider theorem.
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[N[ 2^Sqrt[2], 100]][[1]]
-
PARI
default(realprecision, 20080); x=2^sqrt(2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b007507.txt", n, " ", d)); \\
Extensions
Final digits of sequence corrected using the b-file. - N. J. A. Sloane, Aug 30 2009
Comments