cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007512 Primes of the form floor(e*10^k), i.e., formed by concatenation of an initial segment of the decimal expansion of e.

This page as a plain text file.
%I A007512 M2184 #33 Feb 16 2025 08:32:31
%S A007512 2,271,2718281,
%T A007512 2718281828459045235360287471352662497757247093699959574966967627724076630353547594571
%N A007512 Primes of the form floor(e*10^k), i.e., formed by concatenation of an initial segment of the decimal expansion of e.
%C A007512 The number of digits in a(n) is given in A064118. This allows us to get larger terms that cannot be displayed here, via the given FORMULA. Sequences A005042, A072952, A115453, A119343, A210704, ... are the analogs for Pi, gamma, sqrt(2), sqrt(3), 3^(1/3), ... - _M. F. Hasler_, Aug 31 2013
%D A007512 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A007512 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/e-Prime.html">e-Prime</a>
%H A007512 <a href="/index/Con#constant_primes">Index entries related to "constant primes"</a>.
%F A007512 a(n) = floor(e*10^(A064118(n)-1)). - _M. F. Hasler_, Aug 31 2013
%p A007512 Digits := 110; n0 := evalf(E); for i from 1 to 100 do t1 := trunc(10^i*n0); if isprime(t1) then print(t1); fi; od:
%o A007512 (PARI) c=exp(1);for(k=0,precision(c),ispseudoprime(c\.1^k) & print1(c\.1^k,",")) \\ _M. F. Hasler_, Sep 01 2013
%K A007512 base,nonn
%O A007512 1,1
%A A007512 _N. J. A. Sloane_, _Robert G. Wilson v_, _Simon Plouffe_
%E A007512 Next term is a 1781-digit BPSW-probable prime 2718281828459045235...211151368350627526023. - _Randall L Rathbun_, Feb 02 2002
%E A007512 Edited by _T. D. Noe_, Oct 30 2008
%E A007512 Edited by _M. F. Hasler_, Aug 31 2013