This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007537 M5287 #40 Feb 16 2025 08:32:31 %S A007537 0,1,45,15913,1073579193,4611686005542975085, %T A007537 85070591730234615801280047645054636261, %U A007537 28948022309329048855892746252171976961956366698726387156269151989162886489297 %N A007537 Number of proper covers of an n-set. %C A007537 This sequence is likely to occur with doubled values and offset 0: %C A007537 A000371(n) - 2^(2^n-1) = 1, 0, 2, 90, 31826, 2147158386, ... - _Tilman Piesk_, May 24 2024 %D A007537 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007537 Alois P. Heinz, <a href="/A007537/b007537.txt">Table of n, a(n) for n = 1..11</a> %H A007537 A. J. Macula, <a href="http://www.jstor.org/stable/2690690">Covers of a finite set</a>, Math. Mag., 67 (1994), 141-144. %H A007537 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ProperCover.html">Proper Cover</a>. %F A007537 a(n) ~ 2^(2^n)/4. - _Vaclav Kotesovec_, Jul 02 2016 %F A007537 a(n) = A003465(n) - 2^(2^n-2). - _Tilman Piesk_, May 24 2024 %p A007537 A007537 := proc(n) (1/2)*add((-1)^k*binomial(n,k)*2^(2^(n-k)),k=0..n)-2^(2^n)/4 end; %t A007537 Table[1/2 Sum[(-1)^k Binomial[n,k]2^(2^(n-k)),{k,0,n}]-2^2^n/4,{n,8}] (* _Harvey P. Dale_, Oct 31 2011 *) %Y A007537 Cf. A003465, A000371. %K A007537 nonn,easy,nice %O A007537 1,3 %A A007537 _N. J. A. Sloane_, _Simon Plouffe_ %E A007537 One more term from _Emeric Deutsch_, Aug 01 2005