This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007539 M4297 #86 Apr 03 2023 10:36:09 %S A007539 1,6,120,30240,14182439040,154345556085770649600, %T A007539 141310897947438348259849402738485523264343544818565120000 %N A007539 a(n) = first n-fold perfect (or n-multiperfect) number. %C A007539 On the Riemann Hypothesis, a(n) > exp(exp(n / e^gamma)) for n > 3. Unconditionally, a(n) > exp(exp(0.9976n / e^gamma)) for n > 3, where the constant is related to A004394(1000000). - _Charles R Greathouse IV_, Sep 06 2012 %C A007539 Each of the terms 1, 6, 120, 30240 divides all larger terms <= a(8). See A227765, A227766, ..., A227769. - _Jonathan Sondow_, Jul 30 2013 %C A007539 Is a(n) < a(n+1)? - _Jeppe Stig Nielsen_, Jun 16 2015 %C A007539 Equivalently, a(n) is the smallest number k such that sigma(k)/k = n. - _Derek Orr_, Jun 19 2015 %C A007539 The number of divisors of these terms are: 1, 4, 16, 96, 1920, 110592, 1751777280, 63121588161085440. - _Michel Marcus_, Jun 20 2015 %C A007539 Given n, let S_n be the sequence of integers k that satisfy numerator(sigma(k)/k) = n. Then a(n) is a member of S_n. In fact a(n) = S_n(i), where the successive values of i are 1, 1, 2, 2, 4, 2, (23, 6, 31, 12, ...), where the terms in parentheses need to be confirmed. - _Michel Marcus_, Nov 22 2015 %C A007539 The first four terms are the only multiperfect numbers in A025487 among the 1600 initial terms of A007691. Can it be proved that these are the only ones among the whole A007691? See also A349747. - _Antti Karttunen_, Dec 04 2021 %D A007539 A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22. %D A007539 A. Brousseau, Number Theory Tables. Fibonacci Association, San Jose, CA, 1973, p. 138. %D A007539 R. K. Guy, Unsolved Problems in Number Theory, B2. %D A007539 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007539 T. D. Noe, <a href="/A007539/b007539.txt">Table of n, a(n) for n = 1..8</a> %H A007539 Abiodun E. Adeyemi, <a href="https://arxiv.org/abs/1906.05798">A Study of @-numbers</a>, arXiv:1906.05798 [math.NT], 2019. %H A007539 Jamie Bishop, Abigail Bozarth, Rebekah Kuss, and Benjamin Peet, <a href="https://arxiv.org/abs/2104.11366">The Abundancy Index and Feebly Amicable Numbers</a>, arXiv:2104.11366 [math.NT], 2021. %H A007539 C. K. Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=Multiplyperfect">multiply perfect</a> %H A007539 F. Firoozbakht and M. F. Hasler, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Hasler/hasler2.html">Variations on Euclid's formula for Perfect Numbers</a>, JIS 13 (2010) #10.3.1. %H A007539 Achim Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/achim/mpn.html">The Multiply Perfect Numbers Page</a> %H A007539 Fred Helenius, <a href="http://pw1.netcom.com/~fredh/index.html">Link to Glossary and Lists</a> %H A007539 G. P. Michon, <a href="http://www.numericana.com/answer/numbers.htm#multiperfect">Multiperfect and hemiperfect numbers</a> %H A007539 Walter Nissen, <a href="http://upforthecount.com/math/abundance.html">Abundancy: Some Resources </a> %t A007539 Table[k = 1; While[DivisorSigma[1, k]/k != n, k++]; k, {n, 4}] (* _Michael De Vlieger_, Jun 20 2015 *) %o A007539 (PARI) a(n)=k=1;while((sigma(k)/k)!=n,k++);k %o A007539 vector(4,n,a(n)) \\ _Derek Orr_, Jun 19 2015 %Y A007539 Cf. A000396, A005820, A007691, A025487, A027687, A046060, A046061, A072002, A227765, A227766, A227767, A227768, A227769, A349747. %K A007539 nonn,nice,more %O A007539 1,2 %A A007539 _N. J. A. Sloane_ %E A007539 More terms sent by _Robert G. Wilson v_, Nov 30 2000