cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007602 Numbers that are divisible by the product of their digits.

This page as a plain text file.
%I A007602 M0482 #113 Mar 25 2024 06:36:22
%S A007602 1,2,3,4,5,6,7,8,9,11,12,15,24,36,111,112,115,128,132,135,144,175,212,
%T A007602 216,224,312,315,384,432,612,624,672,735,816,1111,1112,1113,1115,1116,
%U A007602 1131,1176,1184,1197,1212,1296,1311,1332,1344,1416,1575,1715,2112,2144
%N A007602 Numbers that are divisible by the product of their digits.
%C A007602 These are called Zuckerman numbers to base 10. [So-named by J. J. Tattersall, after Herbert S. Zuckerman. - _Charles R Greathouse IV_, Jun 06 2017] - Howard Berman (howard_berman(AT)hotmail.com), Nov 09 2008
%C A007602 This sequence is a subsequence of A180484; the first member of A180484 that is not a member of A007602 is 1114. - _D. S. McNeil_, Sep 09 2010
%C A007602 Complement of A188643; A188642(a(n)) = 1; A038186 is a subsequence; A168046(a(n)) = 1: subsequence of A052382. - _Reinhard Zumkeller_, Apr 07 2011
%C A007602 The terms of n digits in the sequence, for n from 1 to 14, are 9, 5, 20, 40, 117, 285, 747, 1951, 5229, 13493, 35009, 91792, 239791, 628412, 1643144, 4314987. Empirically, the counts seem to grow as 0.858*2.62326^n. - _Giovanni Resta_, Jun 25 2017
%C A007602 De Koninck and Luca showed that the number of Zuckerman numbers below x is at least x^0.122 but at most x^0.863. - _Tomohiro Yamada_, Nov 17 2017
%C A007602 The quotients obtained when Zuckerman numbers are divided by the product of their digits are in A288069. - _Bernard Schott_, Mar 28 2021
%D A007602 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D A007602 James J. Tattersall, Elementary Number Theory in Nine Chapters (2005), 2nd Edition, p. 86 (see problems 44-45).
%H A007602 Reinhard Zumkeller and Zak Seidov, <a href="/A007602/b007602.txt">Table of n, a(n) for n = 1..10000</a>
%H A007602 Jean-Marie De Koninck and Florian Luca, <a href="https://doi.org/10.4171/PM/1777">Positive integers divisible by the product of their nonzero digits</a>, Port. Math. 64 (2007) 75-85. (This proof for upper bounds contains an error. See the paper below)
%H A007602 Jean-Marie De Koninck and Florian Luca, <a href="https://doi.org/10.4171/PM/1999">Corrigendum to "Positive integers divisible by the product of their nonzero digits", Portugaliae Math. 64 (2007), 1: 75-85</a>, Port. Math. 74 (2017), 169-170.
%H A007602 Qizheng He and Carlo Sanna, <a href="https://arxiv.org/abs/2403.14812">Counting numbers that are divisible by the product of their digits</a>, arXiv:2403.14812 [math.NT], 2024.
%H A007602 Giovanni Resta, <a href="http://www.numbersaplenty.com/set/Zuckerman_number/">Zuckerman numbers</a>, Numbers Aplenty.
%H A007602 <a href="/index/Coi#Colombian">Index entries for Colombian or self numbers and related sequences</a>
%p A007602 filter:= proc(n)
%p A007602 local p;
%p A007602 p:= convert(convert(n,base,10),`*`);
%p A007602 p <> 0 and n mod p = 0
%p A007602 end proc;
%p A007602 select(filter, [$1..10000]); # _Robert Israel_, Aug 24 2014
%t A007602 zuckerQ[n_] := Module[{d = IntegerDigits[n], prod}, prod = Times @@ d; prod > 0 && Mod[n, prod] == 0]; Select[Range[5000], zuckerQ] (* _Alonso del Arte_, Aug 04 2004 *)
%o A007602 (Haskell)
%o A007602 import Data.List (elemIndices)
%o A007602 a007602 n = a007602_list !! (n-1)
%o A007602 a007602_list = map succ $ elemIndices 1 $ map a188642 [1..]
%o A007602 -- _Reinhard Zumkeller_, Apr 07 2011
%o A007602 (Magma) [ n: n in [1..2144] | not IsZero(&*Intseq(n)) and IsZero(n mod &*Intseq(n)) ];  // _Bruno Berselli_, May 28 2011
%o A007602 (Python)
%o A007602 from operator import mul
%o A007602 from functools import reduce
%o A007602 A007602 = [n for n in range(1,10**5) if not (str(n).count('0') or n % reduce(mul, (int(d) for d in str(n))))] # _Chai Wah Wu_, Aug 25 2014
%o A007602 (PARI)
%o A007602 for(n=1,10^5,d=digits(n);p=prod(i=1,#d,d[i]);if(p&&n%p==0,print1(n,", "))) \\ _Derek Orr_, Aug 25 2014
%Y A007602 Cf. A034709, A001103, A005349, A288069.
%Y A007602 Cf. A286590 (for factorial-base analog).
%Y A007602 Subsequence of A002796, A034838, and A055471.
%K A007602 nonn,base,easy
%O A007602 1,2
%A A007602 _N. J. A. Sloane_, _Mira Bernstein_, _Robert G. Wilson v_