This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007641 M5219 #45 Feb 16 2025 08:32:31 %S A007641 29,31,37,47,61,79,101,127,157,191,229,271,317,367,421,479,541,607, %T A007641 677,751,829,911,997,1087,1181,1279,1381,1487,1597,1951,2207,2341, %U A007641 2621,2767,2917,3229,3391,3557,3727,4079,4261,4447,4637,4831,5231,5437 %N A007641 Primes of the form 2*k^2 + 29. %C A007641 The first 29 terms of 2*k^2 + 29 (k = 0 to 28) are primes. This was discovered by Adrien-Marie Legendre. The sequence and its first 8 terms appear in the novel Code to Zero by Ken Follett. - _Amiram Eldar_, Apr 08 2017 %C A007641 Let P(k) = 2*k^2 + 29. The polynomial P(2*k - 28) = 8*k^2 - 224*k + 1597 produces prime values (not distinct) for k = 0 to 28. The polynomial P(3*k - 55) = 18*k^2 - 660*k + 6079 produces distinct prime values for k = 0 to 27. Cf. A050265. - _Peter Bala_, Apr 16 2018 %D A007641 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A007641 Ken Follett, Code to Zero, New York: Signet, 2001, p. 18. %H A007641 Vincenzo Librandi, <a href="/A007641/b007641.txt">Table of n, a(n) for n = 1..1000</a> %H A007641 Adrien-Marie Legendre, <a href="http://archive.org/details/essaisurlathor00lege">Essai sur la théorie des nombres</a>, Paris: Duprat, 1798, p. 10. %H A007641 Jitender Singh, <a href="https://arxiv.org/abs/2411.18366">Prime numbers and factorization of polynomials</a>, arXiv:2411.18366 [math.NT], 2024. %H A007641 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-generating Polynomial.</a> %t A007641 Select[Table[2 n^2 + 29, {n, 0, 70}], PrimeQ] (* _Vincenzo Librandi_, Mar 20 2013 *) %o A007641 (Magma) [a: n in [0..60] | IsPrime(a) where a is 2*n^2+29]; // _Vincenzo Librandi_, Mar 20 2013 %o A007641 (PARI) list(lim)=my(v=List(),t); for(n=0,sqrtint((lim-29)\2), if(isprime(t=2*n^2+29), listput(v,t))); Vec(v) \\ _Charles R Greathouse IV_, Jan 20 2022 %Y A007641 Cf. A005846, A050265, A352800. %K A007641 nonn,easy %O A007641 1,1 %A A007641 _N. J. A. Sloane_, _Mira Bernstein_, _Robert G. Wilson v_ %E A007641 Edited by _Erich Friedman_, Feb 09 2002