This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007658 M2420 #72 Feb 16 2025 08:32:31 %S A007658 3,5,7,13,23,43,281,359,487,577,1579,1663,1741,3191,9209,11257,12743, %T A007658 13093,17027,26633,104243,134227,152287,700897,1205459,1896463, %U A007658 2533963,2674381,7034611 %N A007658 Numbers k such that (3^k + 1)/4 is prime. %C A007658 Prime repunits in base -3. %D A007658 J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements. %D A007658 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007658 Paul Bourdelais, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;417ab0d6.0906">A Generalized Repunit Conjecture</a> %H A007658 J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002. %H A007658 H. Dubner, <a href="/A028491/a028491.pdf">Generalized repunit primes</a>, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy] %H A007658 H. Dubner and T. Granlund, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html">Primes of the Form (b^n+1)/(b+1)</a>, J. Integer Sequences, 3 (2000), #P00.2.7. %H A007658 H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a> %H A007658 S. S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/cun/index.html">The Cunningham Project</a> %H A007658 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Repunit.html">Repunit</a> %H A007658 Robert G. Wilson v, <a href="/A084740/a084740.pdf">Letter to N. J. A. Sloane, circa 1991.</a> %t A007658 lst={};Do[If[PrimeQ[(3^n+1)/4], Print[n];AppendTo[lst, n]], {n, 10^5}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 21 2008 *) %o A007658 (PARI) is(n)=ispseudoprime((3^n+1)/4) \\ _Charles R Greathouse IV_, Apr 29 2015 %K A007658 hard,nonn,more %O A007658 1,1 %A A007658 _N. J. A. Sloane_, _Robert G. Wilson v_ %E A007658 a(20) from _Robert G. Wilson v_, Apr 11 2005 %E A007658 a(22) from _Paul Bourdelais_, Nov 08 2007 %E A007658 a(23) from _Paul Bourdelais_, Apr 07 2008 %E A007658 a(24) from _Paul Bourdelais_, Apr 05 2010 %E A007658 a(25) from _Paul Bourdelais_, Aug 28 2015 %E A007658 a(26) from _Paul Bourdelais_, Jan 30 2020 %E A007658 a(27) from _Paul Bourdelais_, Mar 06 2020 %E A007658 a(28) from _Paul Bourdelais_, Mar 22 2024 %E A007658 a(29) from _Paul Bourdelais_, Dec 04 2024