cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007665 Tower of Hanoi with 5 pegs.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 19, 23, 27, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 271, 287, 303, 319, 335, 351, 383, 415, 447, 479, 511, 543, 575, 607, 639, 671, 703, 735, 767, 799
Offset: 1

Views

Author

Keywords

References

  • A. Brousseau, Tower of Hanoi with more pegs, J. Recreational Math., 8 (1975-1976), 169-176.
  • Cull, Paul; Ecklund, E. F. On the Towers of Hanoi and generalized Towers of Hanoi problems. Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1982). Congr. Numer. 35 (1982), 229--238. MR0725883(85a:68059). - N. J. A. Sloane, Apr 08 2012
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. Wood, Towers of Brahma and Hanoi revisited, J. Recreational Math., 14 (1981), 17-24.

Crossrefs

Programs

  • Mathematica
    terms = 100;
    A056556 = Table[Table[m, {(m+1)(m+2)/2}], {m, 0, (6 terms)^(1/3) // Ceiling}] // Flatten;
    a[n_] := With[{t = A056556[[n+1]]}, -1+(1+t(t-1)/2+n-t(t+1)(t+2)/6)*2^t];
    Array[a, terms] (* Jean-François Alcover, Feb 28 2019 *)
  • PARI
    m=1;n=1;while(nK. Spage, Oct 23 2009

Formula

a(n) = - 1 + (1 + A056556(n)*(A056556(n) - 1)/2 + n - A056556(n)*(A056556(n) + 1)*(A056556(n) + 2)/6)*2^A056556(n). - Daniele Parisse, Feb 06 2001