This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007666 M3753 #50 Jul 23 2017 04:04:23 %S A007666 1,5,6,353,72 %N A007666 a(n) = smallest number k such that k^n is the sum of n positive n-th powers, or 0 if no solution exists. %C A007666 The next term a(6) has been claimed to be 1141, but this is incorrect. In fact, 1141^6 is the sum of seven 6th powers. - _Jud McCranie_, Jun 10 2007 %C A007666 a(7) = 568 and a(8) = 1409. - _J. Lowell_, Jul 25 2007 %C A007666 a(6) is either 0 (no solution) or greater than 730000 (see the Resta & Meyrignac link, p. 1054). - _Jon E. Schoenfield_, Jul 22 2017 %D A007666 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A007666 D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 164. %H A007666 Jean-Charles Meyrignac, <a href="http://euler.free.fr/faq.htm">FAQ File</a> %H A007666 Jean-Charles Meyrignac, <a href="http://euler.free.fr/resta.htm">Resta's Algorithm</a> %H A007666 Giovanni Resta and Jean-Charles Meyrignac, <a href="https://doi.org/10.1090/S0025-5718-02-01445-X">The smallest solutions to the diophantine equation x^6 + y^6 = a^6 + b^6 + c^6 + d^6 + e^6</a>, Math. Comp. 72 (2003), pp. 1051-1054. %e A007666 1^1 = 1^1. %e A007666 5^2 = 3^2 + 4^2. %e A007666 6^3 = 3^3 + 4^3 + 5^3. %e A007666 353^4 = 30^4 + 120^4 + 272^4 + 315^4. %e A007666 72^5 = 19^5 + 43^5 + 46^5 + 47^5 + 67^5. %e A007666 568^7 = 127^7 + 258^7 + 266^7 + 413^7 + 430^7 + 439^7 + 525^7. %e A007666 1409^8 = 90^8 + 223^8 + 478^8 + 524^8 + 748^8 + 1088^8 + 1190^8 + 1324^8. %o A007666 (PARI) A007666(n,s,m,p=n)={ /* Check whether s can be written as sum of n positive p-th powers not larger than m^p. If so, return the base a of the largest term a^p.*/ s>n*m^p && return; n==1&&return(ispower(s,p,&n)*n); /* if s,m,p are not given, s>=n and m are arbitrary and p=n. */ !s&&for(m=round(sqrtn(n,n)),9e9,A007666(n,m^n,m-1,n)&&return(m)); for(a=ceil(sqrtn(s\n,p)),min(sqrtn(s-n+1,p),m),A007666(n-1,s-a^p,a,p)&&return(a));} \\ _M. F. Hasler_, Nov 17 2015 %Y A007666 k^n = T(n, 1)^n + ... + T(n, n)^n, where T() is given in A061988. %Y A007666 Examples for n=4 are in A003294. %Y A007666 Examples for n=5 are in A063922. %K A007666 nonn,hard,nice,more %O A007666 1,2 %A A007666 _N. J. A. Sloane_, _Robert G. Wilson v_ %E A007666 Name clarified by _Dmitry Kamenetsky_, Aug 05 2015