A007684 Prime(n)*...*prime(a(n)) is the least product of consecutive primes that is non-deficient.
2, 6, 11, 21, 35, 51, 73, 98, 130, 167, 204, 249, 296, 347, 406, 471, 538, 608, 686, 768, 855, 950, 1050, 1156, 1266, 1377, 1495, 1621, 1755, 1898, 2049, 2194, 2347, 2504, 2670, 2837, 3013, 3194, 3380, 3573, 3771, 3974, 4187, 4401, 4625, 4856
Offset: 1
Keywords
Examples
n=1: a(1)=2 means that primorial(2)=6 divided by primorial(1-1)=1 gives the quotient 6/1=6 which is just non-deficient (being a perfect number); n=3: a(n)=11 because prime(3)=5, primorial(11) = 2*3*5*...*29*31, primorial(3-1) = 2*3 = 6. p#(11)/p#(2) = 3*5*7*11*13*17*19*23*29*31 = 33426748355 = q and sigma(q)/q = 2.00097 > 2 so q is an abundant number. Also p#(10)/p#(3-1) is not yet abundant.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
- H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy) [Annotation on p. 82 references this A-number, but the triangle with that annotation is apparently A046900, unrelated to this entry. - _Andrey Zabolotskiy_, Jul 16 2022]
- Carlos Rivera, Puzzle 329. Odd abundant numbers not divided by 2 or 3, The Prime Puzzles and Problems Connection.
Crossrefs
Programs
-
Mathematica
spr[x_, y_] :=Apply[Times, Table[(Prime[w]+1)/(Prime[w]), {w, x, y}]]; Table[Min[Flatten[Position[Table[Floor[spr[n, w]], {w, 1, 1000}], 2]]], {n, 1, 20}] (* Labos Elemer, Sep 19 2005 *)
-
PARI
a=1;i=0;for(n=1,99,while(2>a*=1+1/prime(i++),);print1(i",");a/=1+1/prime(n)) \\ M. F. Hasler, Jul 30 2016
Formula
Extensions
Additional comments from Labos Elemer, Sep 19 2005
More terms from Don Reble, Nov 10 2005
Edited by N. J. A. Sloane, Dec 22 2006
Comments