This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007709 M1608 #23 Jun 06 2019 04:21:08 %S A007709 1,1,2,6,15,84,330,1812,9978,65503,449719,3674670,28886593,266242729, %T A007709 2527701273,25749021720 %N A007709 Number of winning (or reformed) decks at Mousetrap. %D A007709 A. M. Bersani, "Reformed permutations in Mousetrap and its generalizations," Preprint Me.Mo.Mat. n. 15/2005. %D A007709 R. K. Guy, Unsolved Problems Number Theory, E37. %D A007709 R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993. %D A007709 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A007709 A. M. Bersani, <a href="http://www.dmmm.uniroma1.it/~alberto.bersani/mousetrap.html">On the game Mousetrap</a>. %H A007709 R. K. Guy and R. J. Nowakowski, <a href="/A002467/a002467_1.pdf">Mousetrap</a>, Preprint, Feb 10 1993 [Annotated scanned copy] %H A007709 R. K. Guy and R. J. Nowakowski, <a href="https://www.jstor.org/stable/2975171">Mousetrap</a> Amer. Math. Monthly, 101 (1994), 1007-1010. %Y A007709 Cf. A007710, A007711, A007712, A055459, A067950. %K A007709 nonn %O A007709 1,3 %A A007709 _N. J. A. Sloane_ %E A007709 Better description and more terms from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 09 2007 %E A007709 One more term from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 24 2008