cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007712 Number of once reformable permutations of {1,2,...,n}.

This page as a plain text file.
%I A007712 M1283 #20 Jun 06 2019 05:51:32
%S A007712 1,2,4,14,72,316,1730,9728,64330,444890,3645441,28758111,265434293,
%T A007712 2522822881,25717118338
%N A007712 Number of once reformable permutations of {1,2,...,n}.
%D A007712 A. M. Bersani, "Reformed permutations in Mousetrap and its generalizations", preprint MeMoMat, No. 15, 2005.
%D A007712 R. K. Guy, Unsolved Problems Number Theory, Section E37.
%D A007712 R. K. Guy and R. J. Nowakowski, "Mousetrap," in D. Miklos, V. T. Sos and T. Szonyi, eds., Combinatorics, Paul Erdős is Eighty. Bolyai Society Math. Studies, Vol. 1, pp. 193-206, 1993.
%D A007712 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A007712 A. M. Bersani, <a href="http://www.dmmm.uniroma1.it/~alberto.bersani/mousetrap.html">On the game Mousetrap</a>.
%H A007712 R. K. Guy and R. J. Nowakowski, <a href="/A002467/a002467_1.pdf">Mousetrap</a>, Preprint, Feb 10 1993 [Annotated scanned copy].
%H A007712 R. K. Guy and R. J. Nowakowski, <a href="https://www.jstor.org/stable/2975171">Mousetrap</a> Amer. Math. Monthly, 101 (1994), 1007-1010.
%e A007712 For n=3, 123, 312, 231, 213 are unreformed but 132->123, 321->213 so a(3)=2.
%Y A007712 Cf. A007709, A007711, A055459, A067950.
%K A007712 nonn,nice,more
%O A007712 2,2
%A A007712 _N. J. A. Sloane_
%E A007712 More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Mar 06 2002
%E A007712 2 more terms from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 07 2007
%E A007712 One more term from Alberto M. Bersani (bersani(AT)dmmm.uniroma1.it), Feb 24 2008