cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007719 Number of independent polynomial invariants of symmetric matrix of order n.

This page as a plain text file.
%I A007719 #39 Oct 23 2019 14:35:38
%S A007719 1,2,4,11,30,95,328,1211,4779,19902,86682,393072,1847264,8965027,
%T A007719 44814034,230232789,1213534723,6552995689,36207886517,204499421849,
%U A007719 1179555353219,6942908667578,41673453738272,254918441681030,1588256152307002,10073760672179505
%N A007719 Number of independent polynomial invariants of symmetric matrix of order n.
%C A007719 Also, number of connected multigraphs with n edges (allowing loops) and any number of nodes.
%C A007719 Also the number of non-isomorphic connected multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. - _Gus Wiseman_, Jul 18 2018
%H A007719 Andrew Howroyd, <a href="/A007719/b007719.txt">Table of n, a(n) for n = 0..50</a>
%H A007719 R. J. Mathar, <a href="http://arxiv.org/abs/1709.09000">Statistics on Small Graphs</a>, arXiv:1709.09000 [math.CO] (2017) Table 63.
%F A007719 Inverse Euler transform of A007717.
%e A007719 From _Gus Wiseman_, Jul 18 2018: (Start)
%e A007719 Non-isomorphic representatives of the a(3) = 11 connected multiset partitions of {1, 1, 2, 2, 3, 3}:
%e A007719   (112233),
%e A007719   (1)(12233), (12)(1233), (112)(233), (123)(123),
%e A007719   (1)(2)(1233), (1)(12)(233), (1)(23)(123), (12)(13)(23),
%e A007719   (1)(2)(3)(123), (1)(2)(13)(23).
%e A007719 (End)
%t A007719 mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
%t A007719 EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++,
%t A007719   c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {};
%t A007719   For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
%t A007719 permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m];
%t A007719 Kq[q_, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
%t A007719 RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[ Exp[Sum[Kq[q, t, k]/t x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
%t A007719 A007717 = Table[Print[n]; RowSumMats[n, 2 n, 2], {n, 0, 20}];
%t A007719 Join[{1}, EULERi[Rest[A007717]]] (* _Jean-François Alcover_, Oct 29 2018, using _Andrew Howroyd_'s code for A007717 *)
%Y A007719 Row sums of A322115.
%Y A007719 Cf. A002905, A007716, A007717, A007719, A020555, A050535, A053419, A076864, A191970, A316972, A316974.
%K A007719 nonn,nice
%O A007719 0,2
%A A007719 _Colin Mallows_
%E A007719 a(0)=1 added by _Alberto Tacchella_, Jun 20 2011
%E A007719 a(7)-a(25) from _Franklin T. Adams-Watters_, Jun 21 2011