This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A007721 #46 Jun 25 2017 02:50:58 %S A007721 1,1,2,6,19,68,236,863,3137,11636,43306,162728,614142,2330454,8875656, %T A007721 33924699,130038017,499753560,1924912505,7429159770,28723877046, %U A007721 111236422377,431403469046,1675316533812,6513837677642,25354842098354,98794053266471,385312558567775 %N A007721 Number of distinct degree sequences among all connected graphs with n nodes. %C A007721 Sometimes called "graphical partitions", although this term is deprecated. %H A007721 Wang Kai, <a href="/A007721/b007721.txt">Table of n, a(n) for n = 1..118</a> %H A007721 N. Durand, G. Granger, <a href="http://atm2003.eurocontrol.fr/past-seminars/5th-seminar-budapest-hungary-june-2003/papers/paper_033/view">A traffic complexity approach through cluster analysis</a>, in proceedings of the 5th ATM R&D Seminar, Budapest, Hungary (2003) %H A007721 T. Hoppe, A. Petrone,<a href="http://arxiv.org/abs/1408.3644">Integer sequence discovery from small graphs</a>, arXiv preprint arXiv:1408.3644 [math.CO], 2014. %H A007721 F. Ruskey, <a href="http://webhome.cs.uvic.ca/~ruskey/Publications/AlleyCat/AlleyCat.html">Alley CATs in search of good homes</a>, Congress. Numerant., 102 (1994) 97-110. %H A007721 Kai Wang, <a href="https://arxiv.org/abs/1604.04148">Efficient Counting of Degree Sequences</a>, arXiv preprint arXiv:1604.04148 [math.CO], 2017. %H A007721 <a href="/index/Gra#graph_part">Index entries for sequences related to graphical partitions</a> %Y A007721 Cf. A000569, A004250, A004251, A007722, A029889; A095268 (analog for all graphs). %K A007721 nonn,nice %O A007721 1,3 %A A007721 _Frank Ruskey_ %E A007721 a(9) corrected by _Gordon Royle_, Aug 30 2006 %E A007721 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 19 2007 %E A007721 Prepended missing term a(1), _Travis Hoppe_, Aug 04 2014 %E A007721 a(22)-a(28) added by _Wang Kai_, Feb 15 2017