cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007725 Number of spanning trees of Aztec diamonds of order n.

This page as a plain text file.
%I A007725 #54 Feb 28 2023 23:46:15
%S A007725 1,4,768,18170880,48466759778304,14179455913065873408000,
%T A007725 449549878218740179750040371200000,
%U A007725 1534679662450485063038349752542766158611218432,561985025597966566291275288056092110323394467225010519932928
%N A007725 Number of spanning trees of Aztec diamonds of order n.
%H A007725 Timothy Y. Chow, <a href="https://doi.org/10.1090/S0002-9939-97-04049-5">The Q-spectrum and spanning trees of tensor products of bipartite graphs</a>, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3155-3161.
%H A007725 D. E. Knuth, <a href="https://arxiv.org/abs/math/9501234">Aztec Diamonds, Checkerboard Graphs, and Spanning Trees</a>, arXiv:math/9501234 [math.CO], 1995; J. Alg. Combinatorics 6 (1997), 253-257.
%H A007725 R. P. Stanley, <a href="https://doi.org/10.1016/S0012-365X(96)83024-X">Spanning trees of Aztec diamonds</a>, Discrete Math. 157 (1996), 375-388 (Problem 251).
%H A007725 <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F A007725 a(n) ~ Gamma(1/4) * exp(8*G*n^2/Pi) / (Pi^(3/4) * sqrt(n) * 4^n), where G is Catalan's constant A006752. - _Vaclav Kotesovec_, Jan 05 2021
%F A007725 a(n) = 4^(2*n-1) * Product_{1<=j,k<=n-1} (4 - 4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))*(4 + 4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n))); [Knuth Eq. (8) p. 3]. - _Seiichi Manyama_, Jan 05 2021
%t A007725 Table[4^n * Product[Product[4 - 4*Cos[j*Pi/(2*n)]*Cos[k*Pi/(2*n)], {k, 1, n-1}], {j, 1, 2*n-1}], {n, 0, 10}] // Round (* _Vaclav Kotesovec_, Jan 05 2021 *)
%o A007725 (PARI) default(realprecision, 120);
%o A007725 {a(n) = if(n==0, 1, round(4^(2*(n-1)*n+1)*prod(j=1, n-1, prod(k=1, n-1, 1-(sin(j*Pi/(2*n))*sin(k*Pi/(2*n)))^2))))} \\ _Seiichi Manyama_, Jan 05 2021
%Y A007725 Cf. A007726, A340166, A340176, A340185, A340352.
%K A007725 nonn
%O A007725 0,2
%A A007725 _Richard Stanley_
%E A007725 More terms from _Alois P. Heinz_, Jan 20 2011
%E A007725 Offset changed (a(0)=1) by _Seiichi Manyama_, Jan 05 2021